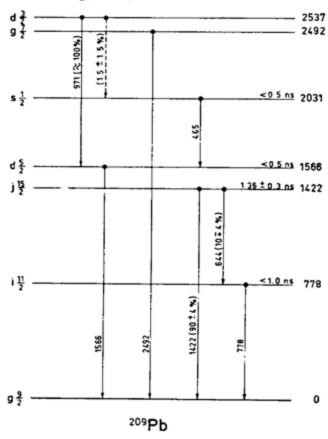


Multi-phonon vibration mode identified from two complementary fission approaches

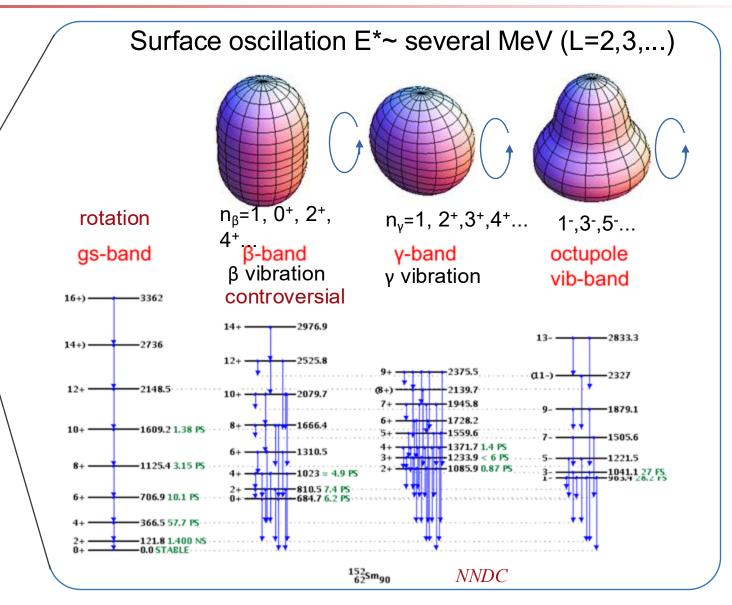
Enhong Wang
Shandong University
HIAF workshop 09. 03, 2025

Outline

- Introduction
 - 1 phonon γ vibrational band
 - 2 phonon γ vibrational band
- Motivation
 - Search for odd-odd case: 2 valence nucleons+vibration+rotation
- Experimental setup
 - Spontaneous fission with Gammasphere
 - Induced fission with VAMOS++, AGATA and EXOGAM
- Results and discussion
 - Level scheme, lifetime, systematics, theoretical calculations
- Hybrid detector system at SDU for JUNA and HIAF astrophysics
- Summary

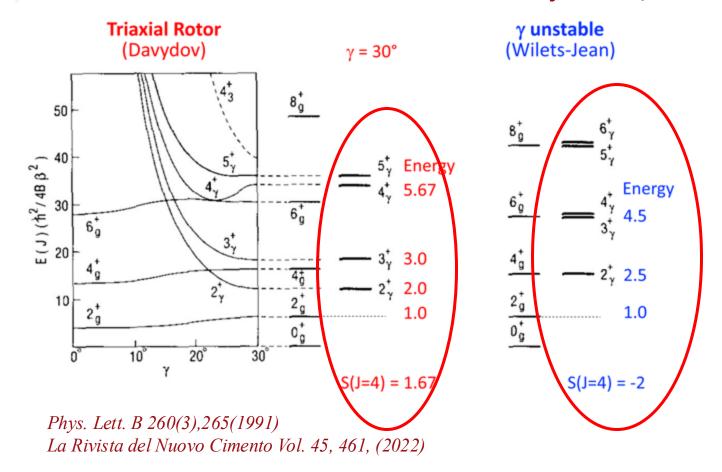


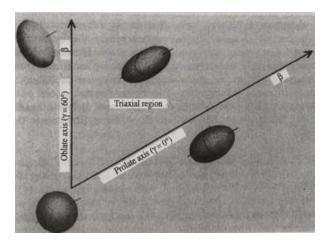
Surface vibration in deformed nuclei



Various nuclear motion

Single particle


Nucl. Phys. A129, 113 (1969)


One phonon y vibrational band

Band structure is related to triaxiality and γ softness

Phonon angular momentum **2** along the symmetry axis Strong transitions 1γ to 0γ bands *having large E2 component*

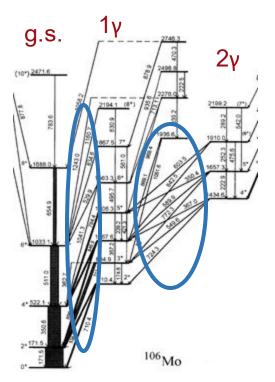
Modern atomic and nuclear physics. F.J. Yang and J. H. Hamilton

γ band energy

$$E(2_{\gamma}^+) \gg E(4_g^+)$$

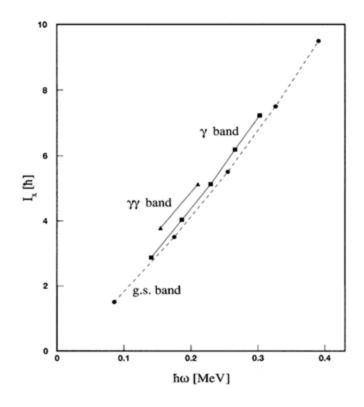
$$E(2_{\gamma}^+) \sim E(4_g^+)$$

$$E(2_{\gamma}^+) < E(4_g^+)$$


stiff triaxial

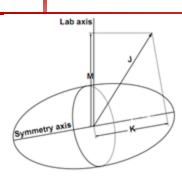
Two phonon y vibrational band

- First observed in ¹⁶⁸Er (PRL 66, 691). First harmonic in ¹⁰⁶Mo (PRL 75, 2280). Other regions A~130, 230...
- Fingerprints and identification of 2γ bands


 1γ to 0γ , 2γ to 1γ allowed E2 2γ to 0γ forbidden

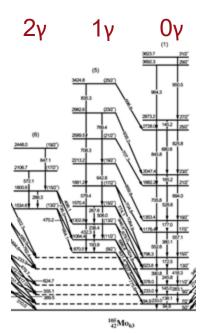
PRL 75, 2280

Similar inertia J⁽²⁾ and rotational parameter

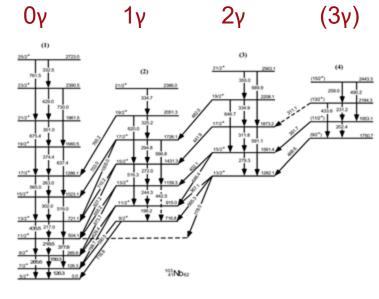

$$I_x = \sqrt{(I_a + 1/2)^2 - K^2}$$
 $I_a = (I_i + I_f)/2$
 $\hbar \omega = (E_i - E_f)/[(I+1)_x - (I-1)_x]$
 $J^{(2)} = \Delta I_x/\Delta \hbar \omega$

PRL 75, 2280

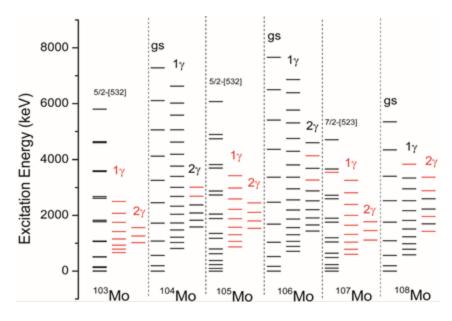
Odd-A



K: projection on symmetry axis. $K_{1\gamma}=K_{0\gamma}\pm2$; $K_{2\gamma}=K_{0\gamma}\pm4$, $K_{0\gamma}=K_{1\gamma}=K_{0\gamma}\pm2$; $K_{2\gamma}=K_{0\gamma}\pm4$ easy to observe

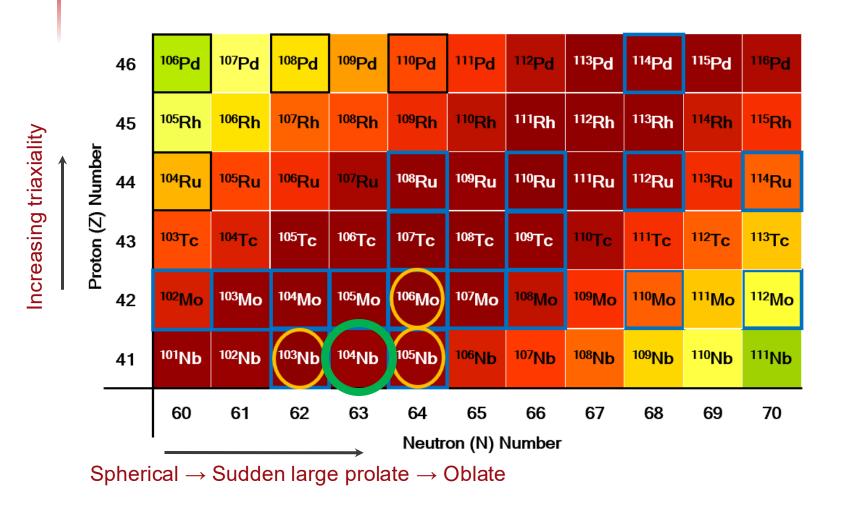

Multi-phonon γ vibrational bands proposed in 14, extended in 2 nuclei by China-Vanderbilt-Berkeley collaborations from ²⁵²Cf SF

• First odd A: ¹⁰⁵Mo


Phys Rev C 74, 054301 (2006)

First odd Z: ¹⁰³Nb

Phys Lett B 675, 420 (2009)


Remarkably consistent systematics

Walter Greiner Memorial Volume, pp. 169 (2018)

How about odd-odd nuclei?

2 phonon γ vibration

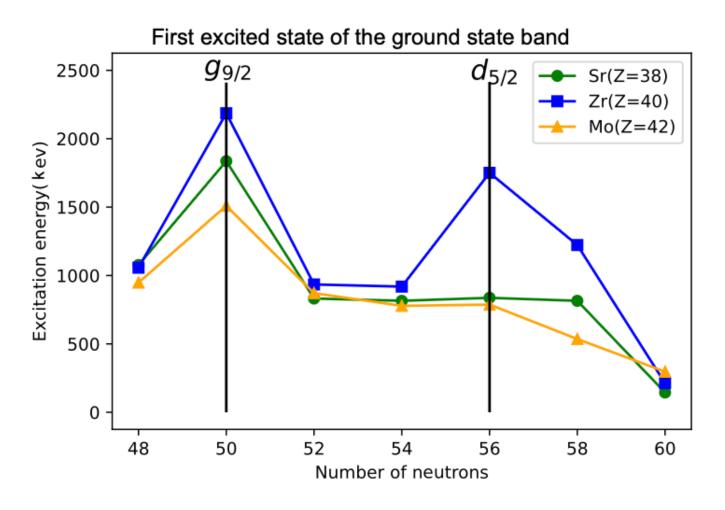
 \bigcirc 3 phonon γ vibration

¹¹⁴Mo T. Sumikama's talk at INPC

Nb, Tc, Rh are candidates for odd-odd multi-phonon γ vibrational bands

No specific theoretical description currently

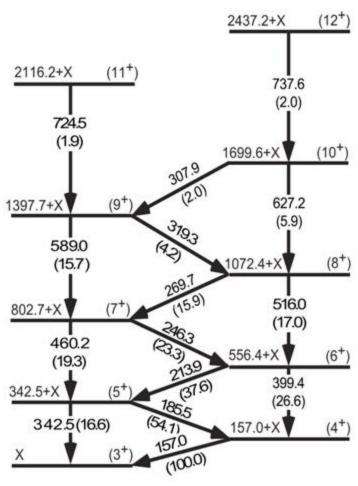
How do the valence proton and neutron change the shape of odd-odd nuclei? Is it possible to form multi-phonon y vibrational bands in odd-odd nuclei?

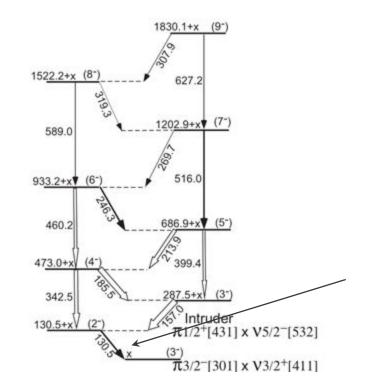

¹⁰⁴Nb is an excellent case

N=56 subshell and sudden onset of deformation at N=60

J, & J, 3 SHANDONG UNIVERSITY

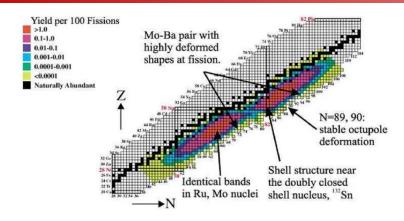
Z=40 and N=60 region gives a remarkable example of sudden nuclear shape transition


N=58: quasi-spherical shape \rightarrow N=60 : rigid rotors with large deformation (β =0.4)


Controversy in ¹⁰⁴Nb

Spin and parity assignments of the high spin levels

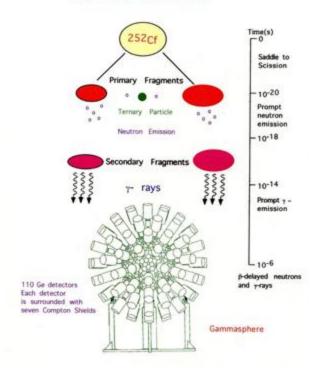
Phys Rev C 78, 014313 (2008)



Proposed ~μs isomeric transition by Luo *et al.*

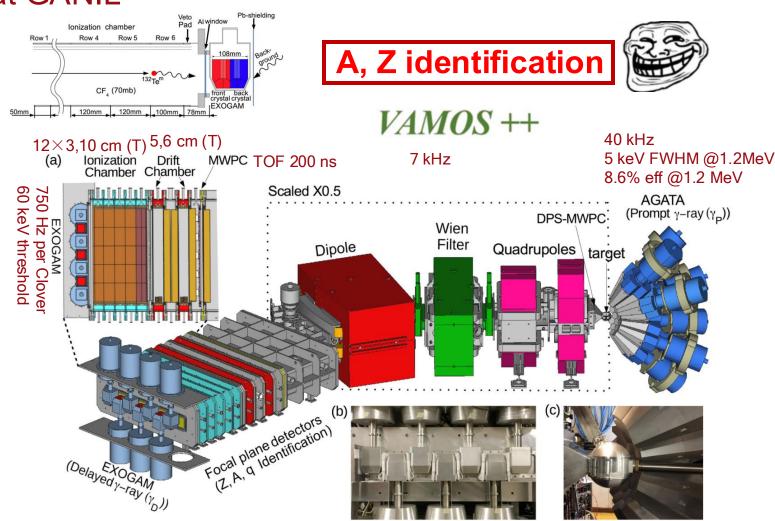
Phys Rev C 89, 044326 (2014)

Spontaneous fission setup



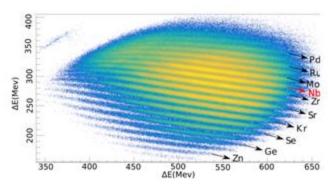
High γ fold
High statistics
High angular momentum
High difficulty of data
analysis

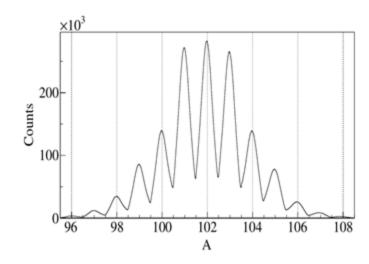
Normal or Hot Fission

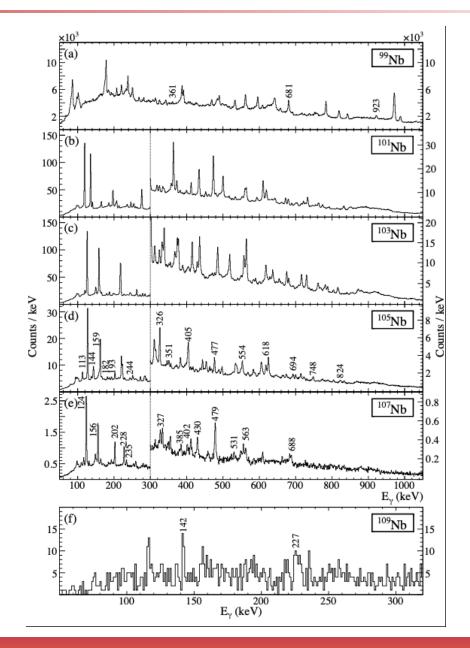

- ²⁵²Cf Source of 62 µCi sandwiched between two 10mg/cm² Fe in a 7.62 cm PE ball
- High angular momentum for both fission partners
- Gammasphere Detector Array with 101 HPGe
- ~1µs coincidence time window
- 5.7x10¹¹ triple coincidences + 1.9x10¹¹ fourfold coincidences
- γ-γ angular correlation
- Over 3000 γ-rays from hundreds of nuclei

Induced fission with A, Z identification setup

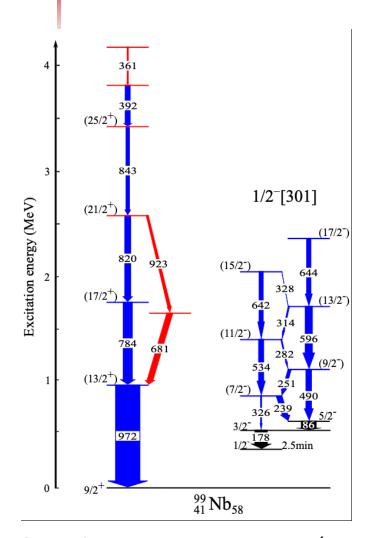
e661 and e680 experiments at GANIL

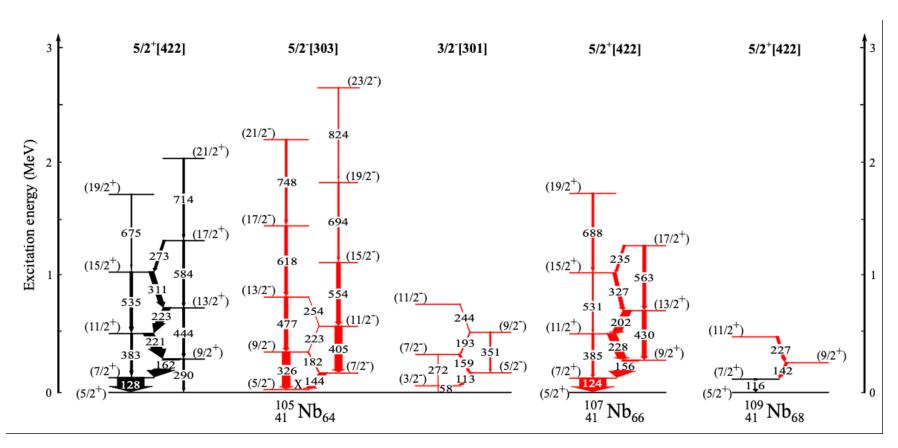

- Induced fission
 - ²³⁸U@ 6.2MeV/u + ⁹Be (1.85mg/cm²)
- Experimental setup:
 - AGATA (prompt γ-ray)
 - VAMOS++ (fragments identification)
 - EXOGAM (delayed γ-ray in 1-200 μs)


γ-rays after isotopic identification

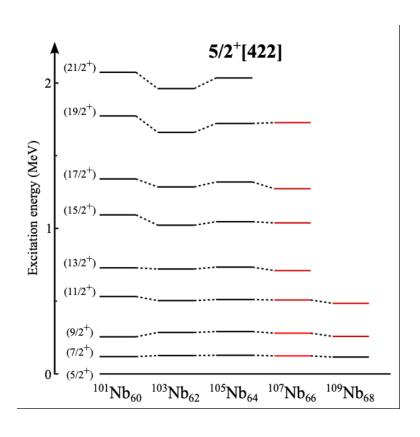


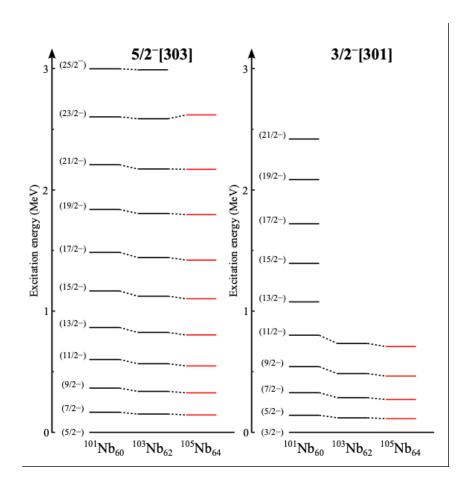
Identification of Nb


Z from ΔE/E



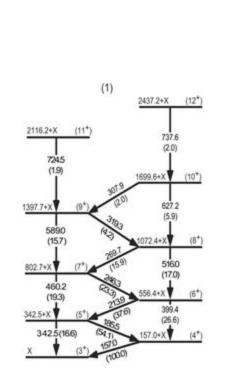
Odd-A Nb isotopes



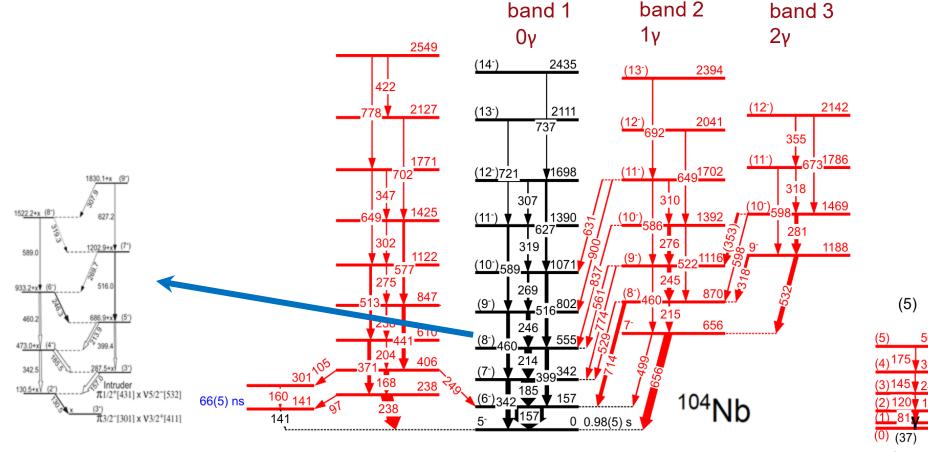

Blue: Phys. Rev. C 108, 044313 (2023)

New in red

Systematics



Results on ¹⁰⁴Nb



Previous results

New results

Phys Rev C 78, 014313 (2008)

Phys Rev C 89, 044326 (2014)

- **5 ground** + low spin 10 keV isomer are assigned from 1) Mass measurement, M. Hukkanen *et al.* Phys. Lett. B 856, 138916 (2024)
- 2) ¹⁰⁴Nb β–decay, S. Nandi *et al.* Proc. ISNS-24

Spin and Parity assignments

Early β-decay

215(120) keV isomer 0.94 s high spin

> g.s. 4.8 s low spin

NDS 108, 2035 (2007)

Mass measurement

9.8(24) keV isomer

R. Orford, Ph.D thesis 2018

10.0(72) keV isomer low spin $(0^-, 1^-)$ 4.9(3) s

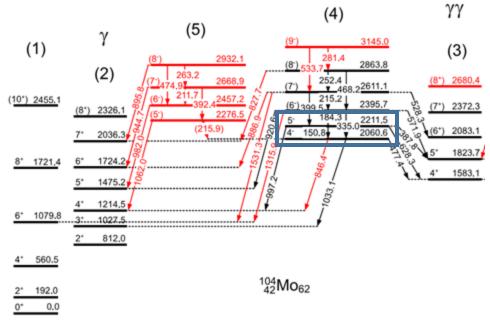
g.s. high spin

M. Hukkanen, Ph.D thesis 2023

β-decay total absoption

Parent: ¹⁰⁴Nb ground (high spin)

 $T_{1/2}$ =0.94 s; Q(β -)=8531

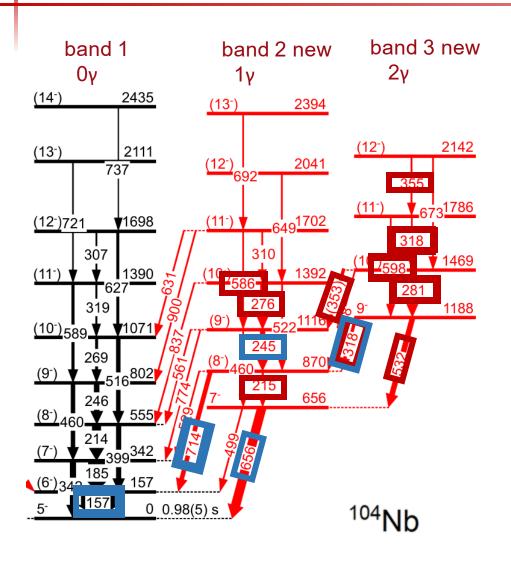

Daughter: ¹⁰⁴Mo

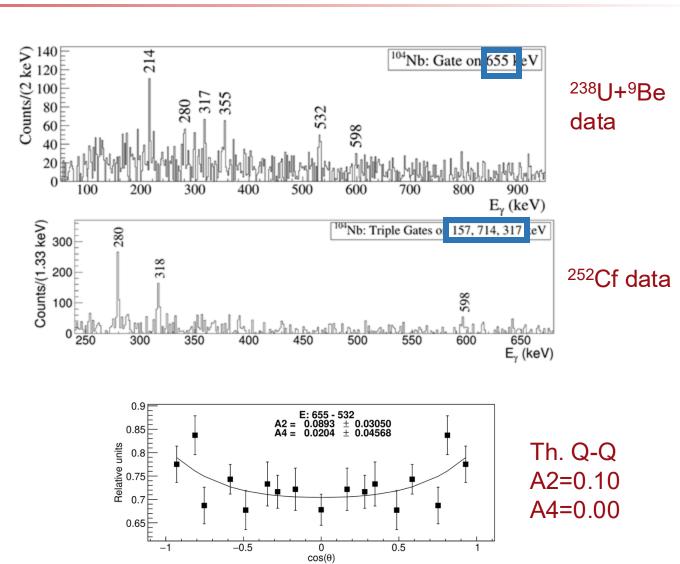
TABL	E III. $I_{\beta}(E)$ if were set to	← g.s. not	
Energy (keV)	Intensity (%)	Error (±)	isomer
0	5.6	1.3	
192	0		
561	2.9	0.6	
812	2.2	0.7	
886	0		
1028	0		
1080	0		
1215	0		
1275	0.02	0.06	
1469	0.4	0.3	
1475	1.7	0.4	
1545	0		
1583	1.9	0.3	
1607	0		
1611	o		
1624	0.3	0.3	
1790	1.0	0.3	
1005	0		ı
2061	28.8	1.5	
2317	U		•

PRC 103, 035803 (2021)

 104 Nb I_8 =28.8(15) to 2061 keV state in ¹⁰⁴Mo $log ft \sim 5.20(3)$

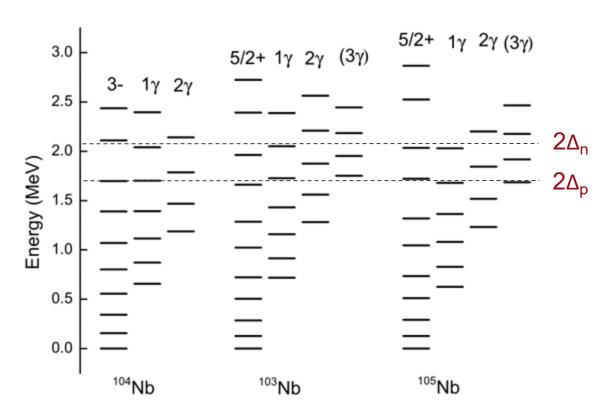
²⁵²Cf SF experiment earlier work


PRC 104, 064318 (2021)


Angular correlations + assigned 4⁻ 2061 and 5⁻ = 2212 keV states in ¹⁰⁴Mo

¹⁰⁴Nb spin is 5⁻ From $^{104}Nb \beta$ – decay, S. Nandi et al. Proc. ISNS-24

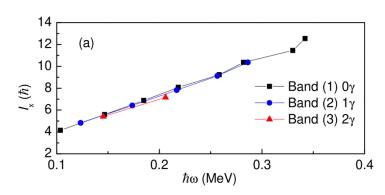
Coincidence spectra and angular correlations



Systematics

Exp energy levels

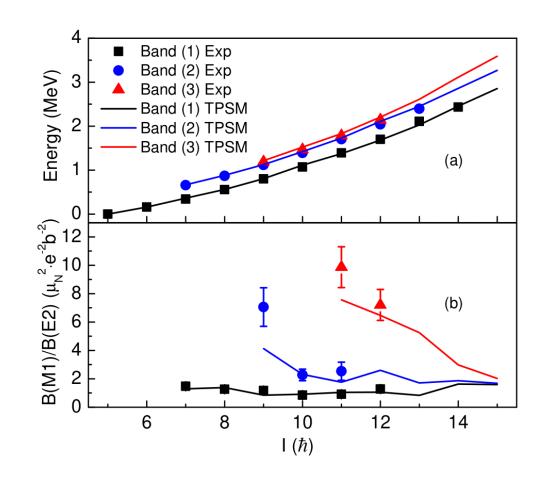
Band head energy


 $2\Delta_n$ ~ 2.1 MeV, $2\Delta_p$ ~1.7MeV, **no 4 qp states** Exp p and n orbitals with K both up to 5/2 Bands 2 and 3 with K=7 and 9 are not 2qp

0	phonon	1 phonon	2 phonon	Energy ratio
¹⁰⁴ Nb	0	656	1188	1.81
Nucleus	$E_{0\gamma} \; (\text{keV})$	$E_{1\gamma}$ (keV)	$E_{2\gamma}$ (keV)	$(E_{2\gamma} - E_{0\gamma})/(E_{1\gamma} - E_{0\gamma})$
$^{103}\mathrm{Nb}$	0.0	716.8	1282.1	1.79
$^{105}\mathrm{Nb}$	0.0	625.9	1231.9	1.97
$^{102}\mathrm{Mo}$	0.0	847.5	1660.4	1.96
$^{103}\mathrm{Mo}$	346.5	1008.6	1370.7	1.55
$^{104}\mathrm{Mo}$	0.0	812.1	1583.3	1.95
$^{105}\mathrm{Mo}$	0.0	870.5	1534.6	1.76
$^{106}\mathrm{Mo}$	0.0	710.4	1434.6	2.02
$^{107}\mathrm{Mo}$	348.3	949.8	1462.5	1.85
$^{108}\mathrm{Mo}$	0.0	586.1	1422.4	2.43
$^{107}\mathrm{Tc}$	137.5	766.2	1499.5	2.17
$^{109}\mathrm{Tc}$	69.6	633.4	1384.2	2.33
$^{108}\mathrm{Ru}$	0.0	708.6	1644.8	2.32
$^{110}\mathrm{Ru}$	0.0	612.7	1618.4	2.64
$^{112}\mathrm{Ru}$	0.0	523.6	1413.6	2.70
$^{114}\mathrm{Ru}$	0.0	563.3	1578.0	2.80

IJMPE 26, 1750030 (2017)

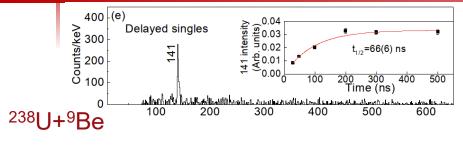
Moments of inertia and TPSM calculations

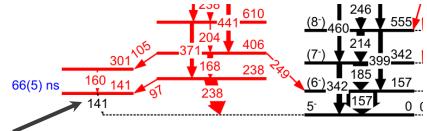


 $J^{(2)}$ (slope) are close for 0γ , 1γ and 2γ

α	¹⁰⁴ Nb	¹⁰³ Nb	¹⁰⁵ Nb
0γ	18.7	18.2	19.5
1γ	18.4	18.0	19.2
2γ	17.2	18.2	19.3

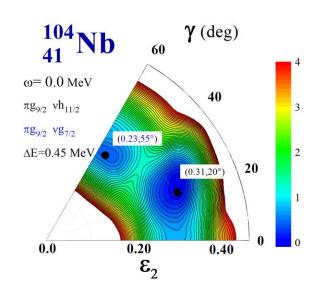
$$E(I, K) = E_K + \alpha \left[I(I+1) - K^2 \right] +$$


$$\beta \left[I(I+1) - K^2 \right]^2 \circ$$



 ϵ =0.32 ϵ '=0.19

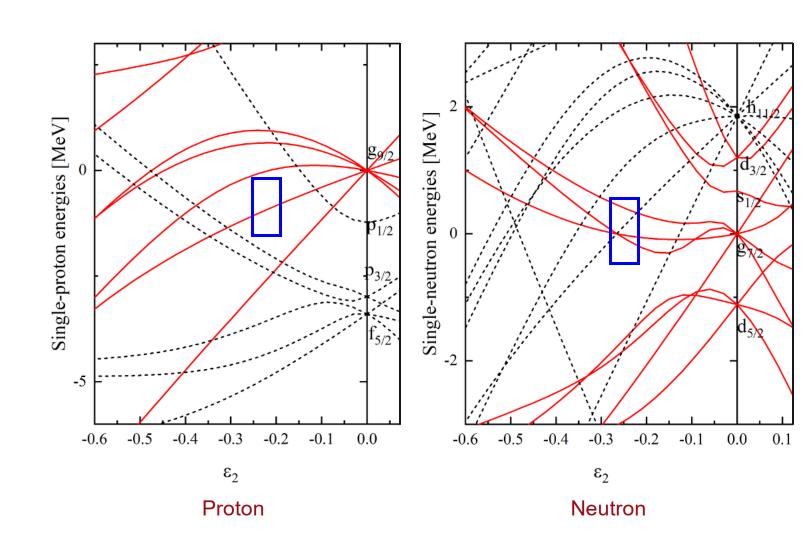
Proposed oblate isomer

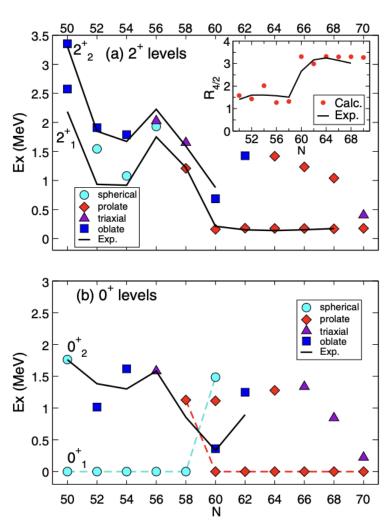


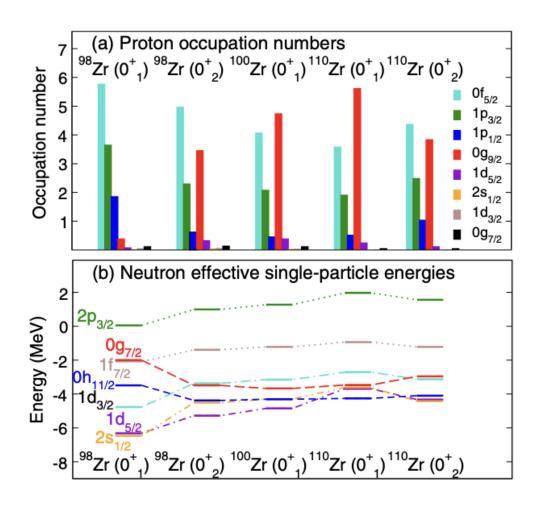
E1 or M1

ICC=0.07(7) E1=0.04, M1=0.09

Cranking model with the shell correction method




TABLE I. Reduced transition probabilities of the interband transitions in $^{101,103,104}{\rm Nb}$ and $^{105}{\rm Mo}$. Halflives, level and transition energies are taken from National Nuclear Data Center website.

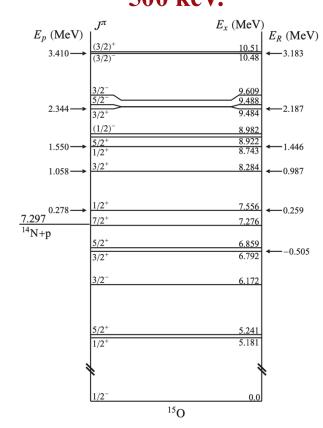

Nucleus	E_i	$t_{1/2}$	E_f	E_{γ}	B(E1)
	(keV)	(ns)	(keV)	(keV)	(W.u.)
$^{-104}\mathrm{Nb}^a$	141	66(5)	0	141	$1.7(1)\times10^{-6}$
$^{101}{ m Nb}$	205	1.83(3)	0	205	$1.97(3)\times10^{-5}$
	208	0.80(5)	0	208	$4.3(3)\times10^{-5}$
$^{103}\mathrm{Nb}$	164	5.1(1)	0	164	$1.37(3)\times10^{-5}$
	248	1.25(4)	0	248	$1.62(5)\times10^{-5}$
$^{105}\mathrm{Mo}$	247	0.30(6)	0	247	$7(1) \times 10^{-5}$
Nucleus	E_i	t _{1/2}	E_f	E_{γ}	B(M1)
	(keV)	(ns)	(keV)	(keV)	(W.u.)
$^{-104}\mathrm{Nb}^a$	141	66(5)	0	141	$1.2(1)\times10^{-4}$
$^{101}{ m Nb}$	346	0.024(5)	208	138	$8.5(17)\times10^{-4}$
$^{103}\mathrm{Nb}$	368	0.041(6)	164	204	$2.1(4)\times10^{-3}$
	534	0.018(6)	315	219	$1.1(4) \times 10^{-3}$
$\frac{^{105}\mathrm{Mo}}{^{a}\mathrm{F}}$	397	0.53(7)	247	150	$6.3(8) \times 10^{-3}$

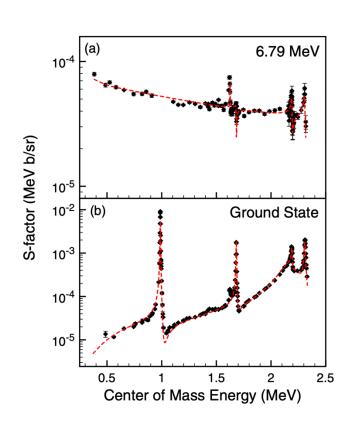
^a From present work for ¹⁰⁴Nb.

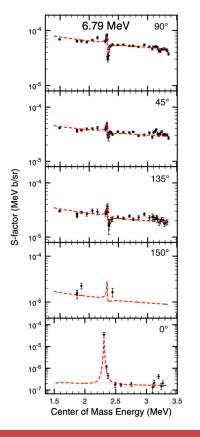
Relationship to quantum phase transition

PRL 117, 172502 (2016)

Outline




- Introduction
- Motivation
- Experimental setup
- Results and discussion
- Hybrid detector system at SDU for JUNA and HIAF astrophysics
 - ► HPGe and CeBr₃ detection array for ¹⁴N(p,g)¹⁵O reaction angular distribution measurement
- Summary


The study of $^{14}N(p,\gamma)^{15}O$ reaction at JUNA

- ➤ The total cross section of this reaction has large contributions from the transitions to 6.79 MeV and the ground state of ¹⁵O.
- > Due to the cosmic ray background:
 - > the cross section measurement was only down to 120 keV.
 - > the investigation of the angular distributions at low energies is warranted: only went down to 500 keV.

PHYSICAL REVIEW C 93, 055806 (2016)

Cross section measurement of $^{14}N(p,\gamma)^{15}O$ in the CNO cycle

Q. Li, ^{1,2,*} J. Görres, ^{1,2} R. J. deBoer, ^{1,2,†} G. Imbriani, ^{1,3} A. Best, ^{1,2,‡} A. Kontos, ^{1,2,‡} P. J. LeBlanc, ^{1,2} E. Uberseder, ^{1,2} and M. Wiescher^{1,2}

¹Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
²The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, Indiana 46556, USA
³Università degli Studi di Napoli "Federico II" and INFN, Napoli, Italy
(Received 22 January 2016; published 23 May 2016)

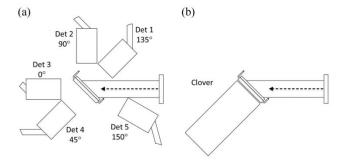


FIG. 2. (a) Detector setups of the angular distribution measurement and (b) of the clover detector.

HPGe and CeBr₃ hybrid detection array for angular distribution measurement of gamma-rays

Summary

- Transitions in ¹⁰⁴Nb have been unambiguously identified with bands up to high spin
- Lifetimes have been measured; an oblate shape isomer is proposed
- Spins and parities are assigned
- Two new bands are assigned to 1 and 2 phonon γ vibrational bands coupled to the known band
- Triaxial projected shell model calculations well reproduce the multi phonon γ vibrational bands
- The complicated multi quasiparticles + multi phonon vibration + rotation mode needs further self-consistent unified microscopic model description
- Hybrid detector system at SDU will contribute to JUNA and HIAF astrophysics