

Jinping bolometric experiment for double beta decay study

马龙

(on behalf of the CUPID-China collaboration)

Outline

- ☐ Cryogenic bolometer
- ☐ Jinping bolometric experiment
- ☐ Recent R&D progresses
- □ Challenges
- □ Roadmap
- □ Summary

International efforts for $0\nu\beta\beta$ search

- Multiple technologies have been applied for $0\nu\beta\beta$ search
- Current experiments based on different technologies and isotopes have achieved comparable measurement sensitivity

Cryogenic bolometer

- Crystal micro-calorimeter operating at extremely low T (~10 mK)
- ➤ High sensitivity E_{dep} measurement (phonon)
- √ High efficiency: source = absorber
- ✓ High energy resolution: ~0.25% (FWHM)

CUORE

- Location: Italy LNGS
- 988 TeO₂ crystals (~750 kg)
- ~3 ton @ T < 50 mK
- ~15 ton @ T < 4K

 $T_{1/2}^{0n} > 2.2x10^{25} \text{ yr (90\% C.L)}$ $m_{\beta\beta} < 90 - 305 \text{ meV}$

Nature 604, 53 (2022)

Most stringent ¹³⁰Te 0vββ half-life limit!

CUPID

- CUPID (CUORE Upgrade with Particle IDentification)
- CUORE infrastructure with detector upgrades
- Scintillating bolometer technology => PID by simultaneously measuring heat and light:
 > 99.9% α discrimination power @ Q_{ββ}

CUPID

> International CUPID roadmap:

- CUPID-baseline (@LNGS): enriched crystal
- CUPID-reach: enriched crystal + lower Bkg
- CUPID-1T: enriched crystal + lower Bkg + larger exposure

Jinping bolometric experiment

Jinping bolometric experiment:

a 100 Mo-based bolometer for $0\nu\beta\beta$ search at CJPL

- ¹⁰⁰Mo-enriched crystals (Q~3034 keV)
- light-heat dual channel readout
- aiming for CUPID-reach sensitivity

Isotope	i.a.(%)	Q [MeV]
⁴⁸ Ca	0.187	4.263
⁷⁶ Ge	7.8	2.039
⁸² Se	9.2	2.998
⁹⁶ Zr	2.8	3.348
¹⁰⁰ Mo	9.6	3.035
¹¹⁶ Cd	7.6	2.813
¹³⁰ Te	34.1	2.527
¹³⁶ Xe	8.9	2.459
¹⁵⁰ Nd	5.6	3.371

Jinping bolometric experiment

- Isotope Q-value and natural abundance
- high $Q_{\beta\beta} => reduced \gamma Bkg$
- high abundance => easier enrichment

Event rate – signal expectation

$$r^{0v} = 1/T_{1/2}^{0v} = \frac{|m_{\beta\beta}|^2}{m_e^2} \times G^{0v} \times |M^{0v}|^2$$

R&D progress - Crystal

- Bridgeman and Czochralski preparation of radiopure natural Li₂MoO₄ crystals
- desirable optical quality at low T
- further efforts to improve transparency and mitigate radioactive impurities

SICCAS/NBU

R&D progress - Crystal

Enriched Mo-100 powder

Crystal Powder

Low Enrichment

High Enrichment

- ➤ Preparation of ¹00Mo-enriched Li₂MoO₄ crystals
- agreement made with INFN on the pre-production of enriched LMO crystals
- first batch of ¹⁰⁰Mo-enriched (98%) LMOs has been produced and is undergoing QA testing
- exploration of the twice growth technique with BG+CZ method - higher production efficiency
 SICCAS

R&D progress - Radiopurity assessment

High sensitivity ICP-MS measurement

 quick QA for sample radio-purity assessment (Li₂CO₃, Mo₂O₃ and LMO)

SINAP

R&D progress - Detector module design

- Module design based on multi-physics simulation
- Thermal-electric response and thermal coupling optimization

FDU

R&D progress - Thermistor

- NTD-Ge (Neutron Transmutation Doped germanium thermistor)
- Fabrication process is well established
- Performance study: I-V and R-T curve: R
 >10MΩ @ T<20 mK
- Continuous optimization

USTC

- AlMn/W superconducting film preparation and performance study
- Optimization towards goal of Tc < 20 mK

BNU

R&D progress - Readout electronics

Low noise Front-End electronics

- improved design of the board and connectors
- noise level: EIN~10 nV/ $\sqrt{\text{Hz}}$ @1 Hz, white noise \sim 2.7 nV/ $\sqrt{\text{Hz}}$

DAQ board

- design and test of a multi-channel digital board with Bessel filter
- sampling rate: 10 ksps/channel

USTC

R&D progress - Ground crystal test

- Crystal testing platform (FDU)
- Customized cryogenic system
- T_{min} : 9.2 mK, σ_T : ±0.02 mK
- Inner copper shield
- effective environmental gamma shielding by more than one order of magnitude

R&D progress - Ground crystal test

- ground tests of the natural LMO are performed
- · heat (phonon) and light channel readouts are achieved

FDU

R&D progress - Ground crystal test

- calibration run performed with Na-22 source
- raw spectrum obtained

FDU/USTC

R&D progress - Underground crystal test

> Underground testing of CUPID-China crystals

- Location: Italy LNGS, 2023/11-12 (Run1 11d), 2024/3-4 (Run2 20d)
- Sensitive crystal quality evaluation through bolometric run (CCVR)

FDU/LNGS

R&D progress - Underground crystal test

- Performance of natural LMO module:
- good energy resolution: 9. 9±1. 2 keV (FWHM) @2615keV
- U/Th contamination: ²³⁸U< 48.2±25.0 μBq/kg, ²³²Th< 42.2±21.1 μBq/kg
- good light yield performance => clear alpha discrimination
- Ongoing test for the enriched LMOs

FDU/LNGS

Challenge - Light-heat coincidence

- Relative low light yield (LY~0.3keV/MeV) and narrow signal window => difficult for coincidence measurement
- ➤ Possible solutions: reduce the light channel noise; optimize chip fabrication, absorber coupling and light collection;

Challenge - Background

- clear alpha contamination (U/Th chain) observed in crystal testing
- material radioactivity mitigation and development of ultra-cleaning process for crystal machining are necessary

The roadmap

Crystal test

6-12 natural LMO (2024-2026)

Demonstrator

10 kg enriched LMO (2026-2028)

200/1000 kg enriched LMO (2028+)

Summary

- > A ¹⁰⁰Mo-based scintillating bolometer based at CJPL => prospective for high sensitivity 0vββ search
- Key technologies are demonstrated => essential for the development of hundred-kg / ton-scale experiment
- Progresses have been made in crystal growth, low noise read-out electronics and bolometer module test
- > R&D in progress
- ¹⁰⁰Mo-enriched crystal testing
- light channel optimization

backup: international roadmap

> CUPID-Baseline

- High enrichment LMO (240 kg ¹⁰⁰Mo)
- Sensitivity (3 σ): $T_{1/2} > 10^{27} \text{ yr }, m_{\beta\beta} < 12\text{-}20 \text{ meV}$

CUPID-Reach

- further background reduction
- Sensitivity (3 σ): $T_{1/2} > 2x10^{27} \text{ yr}$, $m_{88} < 9-15 \text{ meV}$

> CUPID-1T

- 1000 kg of ¹⁰⁰Mo (~1500 kg of LMO)
- Sensitivity(3 σ): $T_{1/2}$ > 8×10²⁷ years, $m_{\beta\beta}$ <4-7 meV

Snowmass 2021 Planning workshop

Potential options (CUPID-1T@2030+)

- single detector (new cryostat)
- multiple facilities world wide

backup: CUPID-China

International CUPID collaboration

International Collaboration:

CUPID – Italy

CUPID - US

CUPID – France

CUPID – China

~ 30 institutes, >150 collaborators

CUPID-China collaboration

~ 8 institutes, > 40 collaborators

CUPID-China is actively collaborating with CUPID- France, Italy and US.