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Machine Learning in PP/NP

2

Application

Inspiration

- Non-uniform detector 
geometries
- Sparse data with high 
dynamic range
…

• The ongoing revolution in the field of AI/ML has significantly influenced the particle physics and 
nuclear physics community


• The applications include but not limited to 


‣ Operation of accelerators and detector systems: beam monitoring, trigger, anomaly 
detection, automatic shift, etc


‣ Improving sensitivity by extracting more information from data: simulation and reconstruction 


‣ Improving Monte Carlo calculations for lattice QCD


‣ ……



2025/7/24 @ IMP Wenjie Wu（吴⽂杰） 3



2025/7/24 @ IMP Wenjie Wu（吴⽂杰）

Machine Learning in NOvA and DUNE

4
A lot yet to be published 
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Machine Learning in NOvA and DUNE
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• NOvA is the first HEP experiment to apply CNNs to publish physics results 

• Increased in sensitivity to neutrino oscillation parameters over traditional methods 
equivalent to collecting 30% more exposure
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Machine Learning in NOvA and DUNE
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Mainly focus on Reconstruction and Simulation 

Classification vs. Regression
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NOvA Detector
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• FD and ND are functionally identical to minimize systematics

• Composed of highly reflective extruded PVC cells filled with liquid scintillator. Scintillation 

light captured and routed to Avalanche Photodiode (APD) via wavelength shifting fiber (WLS)


• Cells arranged in planes, assembled in alternating horizontal and vertical directions → 
provide 3D views of the events
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Detector Views
• NOvA detectors are naturally segmented


• Producing a pair of pixel maps (Cell number v.s. Plane 
number) for the Top and Side view of each interaction

8
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• NOvA uses a variety of algorithms to reconstruct physics information for which slicing is a core input


• Machine learning is making significant contribution in the reconstruction chain and can replace 
“traditional” kinematic based algorithms in most cases


• Neutrino flavor and particle classification: CNN, Transformer; Energy reconstruction: CNN

Event Reconstruction in NOvA

Slicer Vertex 
Finding

Particle 
clustering

Particle  
ID/Energy

Event  
ID/Energy

Analysis

Hits belong to the same 
neutrino interaction Neutrino interaction point Hits belong to the 

same particle
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CNN-based Event Classifier (EventCVN)
• CVN: a convolutional neural network, based on modern image recognition 

technology, identifies neutrino interactions directly from pixel maps

10

CNN architecture

2016: GoogleNet

Now: Modified MobileNetv2

Select νμ (ν̄μ) CC and νe (ν̄e) CC candidates 
from neutrino (anti-neutrino) beam with CVN

CVN output in the far detector MC
JINST 11, P09001 (2016)
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CNN-based Event Classifier (EventCVN)
neutrino mode anti-neutrino mode

• Similar performance for 
neutrino and anti-
neutrino modes


• Anti-neutrino mode 
shows slight increase in 
efficiency 

• Purity over 90% for all 
interaction flavors

11
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TransformerCVN for Event and Particle Classification
• Transformer: attention based network, ideal 

for training on variable-length collection of 
objects such as prongs


“TransformerCVN” = Transformer+CNN


• Combines the spatial learning enabled by 
convolutions with the contextual learning 
enabled by attention


• Classifies each event and reconstructs 
every individual particle’s identity


• Attention mechanisms 


• focus on regions with high importance, 
reduce the computing burden and 
enhance performance


• enable performing interpretability studies
12



2025/7/24 @ IMP Wenjie Wu（吴⽂杰）

TransformerCVN for Event and Particle Classification

• Comparable performance of identifying neutrino flavors compared to our benchmark network 
(EventCVN)


• Great improvement in particle identification, benefits from the additional context provided by all 
prongs and the transformer’s attention mechanism, compared to our benchmark network (ProngCVN)

13
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TransformerCVN for Event and Particle Classification
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• Interpretability of the network


- Attention map: importance of each input to each output


• Diagnose neural network and explain decision


- Saliency map: derivative of a network output w.r.t the 
input pixel


• Study salience to understand which regions the 
Transformer focuses on to identify a particle

14
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Regression CNNs for Energy Estimation
• The CNN architecture used is an adapted ResNet


• Weighting scheme so the loss function sees a flat 
energy distribution, to control energy dependence


• Use mean absolute percentage error instead of 
square of errors to decrease the effects of outliers

15

PhysRevD.99.012011

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.012011
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Regression CNNs for Energy Estimation
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NOvA Simulation

• Regression CNN shows a better resolution compared 
with kinematics-based energy reconstruction


• Shows smaller systematic uncertainties due to 
neutrino interaction simulation


• Good stability over interaction types

16

Also trained for electron energy, hadronic energy, νμ energy, etc
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DUNE detector: LArTPC
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• Charged particles ionize argon atoms


• Ionized electrons drift opposite to the E field in 
the LAr and are collected on the anode wire/PCB 
planes (~ ms)  2D spatial location


• Argon scintillation light (~ ns) detected by photon 
detectors, providing event start time 


• Electron drift time projection  enable 3D spatial 
location 


‣ Clean separation of  and  CC events 


• Low threshold for charged particles  good 
neutrino energy reconstruction

→

t0

→

νμ νe

→

Tracker & Calorimeter
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Liquid Argon TPC
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DUNE HD 

Simulated 3.0 GeV νμ

DUNE HD 

Simulated 2.5 GeV νe

• The high-resolution pixel map readout is ideal for image processing neural networks to 
reconstruct neutrino events


• Developing AI-based reconstruction chain: 

‣ Energy, direction, vertex (regression, CNN)

‣ Particle ID, neutrino flavor ID (classification, CNN, Transformer)

‣ Shower/track clustering (image segmentation, CNN, GNN)
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CNN for classification and regression

19
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CNN for classification and regression

20

• The primary goal of the CVN is to efficiently and accurately produce event selection of  CC and  
CC in FHC,  CC and  CC in RHC 

• The  and  efficiencies in both FHC and RHC beam modes all exceed 90% in the neutrino flux peak

νe νμ
ν̄e ν̄μ

νe νμ
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3D Particle Direction Reconstruction

21

• The 2-D planar views provide incomplete information about the interaction geometry, 
resulting in less precise 3-D information reconstruction

• For direction reconstruction, the 3-D pixel maps are created by combing spatial and 
charge information from all 3 planes

‣ These 3-D pixel maps are 100x100x100 pixels which are 125x125x250 cm for  CC event, and 
500x500x1000 cm for  CC event

νe
νμ

 CCνe  CCνμ
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3D Particle Direction Reconstruction

22

• The 3-D CNN model is built on a series of 
“residual blocks” and a linear layer to output 3-
D direction vectors 

• achieves resolution improvements of 65% for 
electron directions and 50% for muon directions
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Graph Neural Network for Object Reconstruction

23

• Graph Neural Networks (GNN): define input data as a graph 
represented by nodes and edges, convolutions on nodes and edges 
rather than the entire pixel to speed up training

• Successfully cluster LArTPC showers/tracks with GNN in ExtExa.TrkX 
project (a collaboration developing GNN reconstruction for HEP)
‣ Implementing under DUNE context
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KamLAND-Zen

24

PHYSICAL REVIEW C 107, 014323 (2023)
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KamLAND-Zen
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PHYSICAL REVIEW C 107, 014323 (2023)

CNN + LSTM
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KamLAND-Zen
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PHYSICAL REVIEW C 107, 014323 (2023)
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Challenges

27

Hadronic response

EM response

• Finding optimized models: detector geometry, electronic 
readout, physical events


• Robustness of ML models: training sample and reality


• Interpretability of ML techniques
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Summary

28

• There is huge potential to boost the detection efficiency/sensitivity with the help of AI/ML 
techniques


‣ Replacement or augmentation of traditional analyses with ML models that can exploit complex 
detector signatures, assist detector operation and anomaly detection


• Challenges along the way: performance and validity


‣ New models: Graph Neural Networks, Unsupervised training, …


‣ Expansive data comparison, impact analysis, uncertainty studies and cross-checks to improve 
robustness and interpretability

Thanks!



Backup
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Raw Far Detector readout in a 550 μs window


On surface sees ~130 kHz cosmic rate
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Sliced to the 10 μs beam spill window

3 m

14 m
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CNN-based Particle Classifier (ProngCVN)

• Single particles are separated using 
geometric reconstruction methods


• Classify particles using both views of the 
particle and both views of the entire event 

• This shows the network contextual 
information about single particles

32

Phys.Rev.D 100 (2019) 7, 073005
CNN architecture:

Modified MobileNetv2

Four-tower Siamese structure
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CNN-based Particle Classifier (ProngCVN)

• Improvements were found in both efficiency and purity for all particle types, 
compared to the particle-only network


• In particular ~10% increase in the efficiency of selecting photons and pions

33
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LSTM for Energy Estimation
• Long Short-Term Memory (LSTM) is a type of recurrent neural network


• Takes a number of traditional reconstruction quantities as inputs


• Trained with artificially engineered sample to increase network resilience


• Resolution comparable with regression CNN

34
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ML Vertexer (VertexCVN)
• More accurate vertex finding, means more 

accurate on


- Clustering hits to form individual particle 
tracks/showers


- Identifying particle types


- Energy estimation


• Same network architecture as EventCVN 
(modified MobileNetv2) was explored to 
predict one 3D vertex


• Shows good performance across 
interaction types

35

Erin Ewart, APS April 2023~1 cell/pixel



2025/7/24 @ IMP Wenjie Wu（吴⽂杰）

Full Event Reconstruction with Image Segmentation
• Full event reconstruction on a hit-by-hit basis using instance 

segmentation:


- Bounds: Create a bounding box around each particle with a 
Region-based CNN (RCNN)


- ID Score: Use a softmax function to classify the particle 
contained within each box


- Clusters: Group together hits, identify hits, then individual hits 
are combined to form clusters


• Very powerful in PID and clustering efficiency


• No dependence on other reconstruction (vertex, etc)


• However, it’s quite slow to run on CPUs, and more work needs to 
be done to run at scale

36
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Cosmic filtering with a NN

37

• Network based on ResNet18 backbone with a 
siamese structure 


- Takes in two event images (top-view and side-
view) as input


• Softmax output with five labels: νμ, νe, ντ, NC, 
and cosmic score


• Training sample contained 1M+ νμ, νe, and NC 
events in both beam modes and 5M+ cosmic 
events


- Not trained separately for neutrino/
antineutrino mode


• Performs better than traditional cosmic rejection 
in all samples
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Single particle ID

38

• NOvA also has trained a 
network using singularly 
simulated particles for ND 
analyses → no contextual 
information


• Also developing a network 
designed for neutron 
identification using these 
samples
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Improved ProngCVN

39

• Modifies ProngCVN 
(modified MobileNetv2) 
architecture by adding 
Squeeze-Excite block for 
channel attention


• Trained on a combined 
sample of neutrino and 
antineutrino mode


• Shows good performance 
for particle classification

Akshay Chatla, DAE 2022
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Event Topology

40

Pixel size: ~ 4 cm x 6 cm

Diffuse activity from  
nuclear recoil system

NC (background)

Short, wider,  
fuzzy shower

 CC (  appearance signal)νe νe

Long, straight track

 CC (  disappearance signal)νμ νμ

J. Inst. 11, P09001 (2016)
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NvDEx-100
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• 100 kg SeF6 gas at 10 atm in the sensitive volume

• Barrel part length: 160 cm, pressure vessel inner diameter: 120 cm

• Tightness requirement for poisonous SeF6: < 0.05 ppm in environment
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Simulation Framework
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全流程模拟：信号和本底产⽣、电⼦径迹和能量
沉积、正负离⼦产⽣和漂移、Topmetal-S芯⽚响
应信号、径迹重建、事例鉴别等
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Simulation Framework

43
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Simulation Framework

44

读出平⾯：32个模块，每个模块有16x16共256个正六边形像素，相邻像素中⼼间距8 mm，总共8192个像素
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Simulation Framework
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• 利⽤信号、本底事件不同的⼏何特征，使⽤卷积神经⽹络进⾏信号本底鉴别

• 0vββ信号与β本底事例的CNN响应值分布差别很⼤

• 在保证信号90%的挑选效率时，可以排除98.6%的本底事例
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Sensitivity Estimation

46

• Dominant background is natural radiation 

• 0.4 evts/yr in ROI before suppression 

using event topology information

γ
• 100 kg natural SeF6 (3.7 kg Se), 5 years

•  yr (90% CL)


• 100 kg enriched 82SeF6, 5 years

•  yr (90% CL)

T1/2 > 4 × 1025

T1/2 > 4 × 1026


