第一届中微子、原子核物理和新物理研讨会(vNN2025)

Neutrinoless Double beta decay with Pandax

HAN, Ke 韩柯 (SJTU)

For the PandaX Collaboration// 2025/7/23

Outline

1. Introduction to PandaX and liquid xenon TPC

2. PandaX-4T

- 1. 134 Xe 2νββ (0νββ) results
- 2. ¹³⁶Xe 0vββ limits
- 3. ¹³⁶Xe decay to excited states and ¹²⁴Xe double electron capture
- 3. Future: PandaX-xT

PandaX: Particle and astrophysical Xenon Experiment

PandaX-4T

- A multi-ton dual-phase xenon TPC at B2 hall of China Jinping Underground Laboratory
- 1.2 m (D) ×1.2 m (H); Sensitive volume: 3.7-ton LXe; 3-inch PMTs: 169 top / 199 bottom
- Water shielding

PandaX-4T timeline

2020/11 – 2021/04	Commissioning (Run 0) 95 days data
2021/07 – 2021/10	Tritium removal xenon distillation, gas flushing, etc.
2021/11 – 2022/05	Physics run (Run 1) 164 days data
2022/09 – 2023/12	CJPL B2 hall construction xenon recuperation, detector upgrade

Detector is taking Run 2 data

PandaX 0νββ HAN, Ke (SJTU)

Liquid Xenon Time Projection Chamber (LXe TPC)

- Prompt scintillation signal (S1) followed by drift electron signal (S2)
- Measures the 3D position, energy, and time
- Nuclear Recoil (NR) and electron recoil (ER) discrimination
- Single-site (SS) and multi-site (MS) event discrimination
- Large monolithic target: High signal efficiency and effective self-shielding

• LXe TPC as a Total-Absorption 5D Calorimeter

¹³⁶Xe DBD

PandaX Analysis in MHE region

¹³⁴Xe DBD

124Xe 2nDEC

124Xe OnDEC

Full range ER spectrum: exotic BSM physics, nuclear physics

Solar 8B neutrino

WIMP and other dark matter

Existing Analysis at low energy

134 Xe 2 ν β β and 0 ν β β

- Q=826 keV; Half-life from theoretical predictions: 10^{24} - 10^{25} yr; Never been observed
- Previous $2v\beta\beta$ ($0v\beta\beta$) half-life limit from EXO-200 : $T > 8.7x10^{20}$ yr ($1.1x10^{23}$ yr) at 90% CL
- Discovery within reach with a natural Xe TPC

¹³⁴Xe (0)2νββ searches at PandaX-4T

- Q=826 keV; Half-life from theoretical predictions: 10²⁴-10²⁵ yr; Never been observed
- Previous $2\nu\beta\beta$ ($0\nu\beta\beta$) half-life limit from EXO-200 : $T > 8.7 \times 10^{20}$ yr (1.1×10^{23} yr) at 90% CL
- PandaX-4T: more ¹³⁴Xe; much less ¹³⁶Xe; wider energy range; discovery possible

	PandaX-4T	EXO-200
¹³⁴ Xe mass	68.7 kg	18.1 kg
¹³⁶ Xe abundance	8.90%	81%
Analysis threshold	200 keV	460 keV
Live Time	94.9 days	600 days

¹³⁴Xe half-life limits @ PandaX-4T

- Simultaneous fit for ¹³⁴Xe $2\nu\beta\beta$ and $0\nu\beta\beta$
- Final counts of $2\nu\beta\beta$ and $0\nu\beta\beta$: $10\pm269(\text{stat.})\pm680(\text{syst.})$ and $105\pm48(\text{stat.})\pm38(\text{syst.})$
- 90% CL lower limits on the half-life: $T_{1/2}^{2\nu\beta\beta} > 2.8 \cdot 10^{22} \text{ yr}$ and $T_{1/2}^{0\nu\beta\beta} > 3.0 \cdot 10^{23} \text{ yr}$

PRL 132, 152502 (2024)

¹³⁶Xe DBD

PandaX Analysis in MHE region

¹³⁴Xe DBD

124Xe 2nDEC

124Xe OnDEC

Full range ER spectrum: exotic BSM physics, nuclear physics

keV

10 keV

100 keV

Solar 8B neutrino

WIMP and other dark matter

Existing Analysis at low energy

Search for ¹³⁶Xe 0vββ with natural Xe TPC

	Bkg rate (/keV/ton/y)	Energy resolution	FV mass (kg)	Live time	Sensitivity/Limit (90% CL, year)	Year
PandaX-II	~200	4.2%	219	403 days	2.4 ×10 ²³	2019
XENON1T	~20	0.8%	741	203 days	1.2×10^{24}	2022

Background Model

- 136 Xe $2\nu\beta\beta$ (from PandaX measured 136 Xe half-life)
- Detector material: ⁶⁰Co, ⁴⁰K, ²³²Th, ²³⁸U (from HPGe material assay), and grouped into top, side, and bottom parts
- Stainless steel platform (SSP): ²³²Th, ²³⁸U (from MS fitting)

Stainless steel platform (SSP) contribution

Blinded Fit and Sensitivity

Goodness-of-fit:

 $\chi^2/NDF = 1.14$

Energy [keV]

Median sensitivity is estimated by fits to toy-data, generated from background model.

$$T_{1/2, sensitivity}^{0\nu\beta\beta} > 2.7 \times 10^{24} yr \text{ at } 90\% \text{ C.L.}$$

Unblinded Fit and Results

- ¹³⁶Xe exposure: 44.6 kg-yr
- Energy resolution @ 2615 keV: 2.0% in Run0 and 2.3% in Run1
- 136 Xe $0\nu\beta\beta$ event rate: $14\pm55\ t^{-1}yr^{-1}$, $<111\ t^{-1}yr^{-1}$ at 90% C.L.

•
$$T_{1/2}^{0\nu\beta\beta} > 2.1 \times 10^{24} \ yr$$
 at 90% C.L. $\langle m_{\beta\beta} \rangle = (0.4 - 1.6) \ \text{eV/c}^2$

arXiv:2412.13979, Science Bulletin

Search for ¹³⁶Xe 0vββ with natural Xe TPC

	Bkg rate (/keV/ton/y)	Energy resolution	FV mass (kg)	Live time	Sensitivity/Limit (90% CL, year)	Year
PandaX-II	~200	4.2%	219	403 days	2.4 ×10 ²³	2019
XENON1T	~20	0.8%	741	203 days	1.2×10^{24}	2022
PandaX-4T	~10	2.0-2.3%	735	258 days	2.1 × 10 ²⁴	2024

- The most stringent constraint from a natural xenon detector
- Improvement w.r.t PandaX-II by an order of magnitude and XENON1T by a factor of 1.8
- Demonstrating the potential of 136 Xe $0\nu\beta\beta$ search with next-generation multi-ten-tonne natural xenon detectors

¹³⁶Xe Decay to excited states (ArXiv:2502.03017, JHEP)

Time

Drift time

Results

- $T_{1/2}^{2\nu\beta\beta-0^+}$ > 7.5 ×10²² yr at the 90% confidence level
- First such result from a natural xenon detector
- PandaX first MS analysis

PandaX 0vββ HAN, Ke (SJTU)

¹³⁶Xe DBD

PandaX Analysis in MHE region

¹³⁴Xe DBD

124Xe 2nDEC

124Xe OnDEC

Full range ER spectrum: exotic BSM physics, nuclear physics

keV

10 keV

100 keV

Solar 8B neutrino

WIMP and other dark matter

Existing Analysis at low energy

¹²⁴Xe double electron capture (arXiv:2411.14355, JHEP)

Larger Cleaner Detector

26

PandaX-xT: Multi-ten-tonne Liquid Xenon Observatory

- Active target: 43 tons of Xenon
 - Test the WIMP paradigm to the neutrino floor
 - Explore the Dirac/Majorana nature of neutrino
 - Search for astrophysical or terrestrial neutrinos and other ultra-rare interactions
- Notable detector improvements:
 - High-granularity, low-background 2-in PMT array
 - Cu/Ti vessel for improved radiopurity
 - Inner liquid scintillator veto

Outer VETO: 3000 m3 of ultrapure water Middle VETO, 1000m3 of ultrapure water Inner vessel Cu. 3-ton Outer vessel, 15-ton **Stainless** Steel 40T LXe **Photosensors** (vacuum-TPC. jacketed) 2.5mx2.5m Inner VETO: liquid scintillator, 30 ton

SCPMA 68, 221011 (2025)

PandaX-xT: Multi-ten-tonne Liquid Xenon Observatory

- Active target: 43 tons of Xenon
 - Test the WIMP paradigm to the neutrino floor
 - Explore the Dirac/Majorana nature of neutrino
 - Search for astrophysical or terrestrial neutrinos and other ultra-rare interactions
- Notable detector improvements:
 - High-granularity, low-background 2-in PMT array
 - Cu/Ti vessel for improved radiopurity
 - Inner liquid scintillator veto

Distillation Tower Cryogenics and Electronics and Circulation System **DAQ System Dual-Phase Xenon Time Projection** Chamber **OVETO** Water Shielding Tank

SCPMA 68, 221011 (2025)

New 2" multi-anode R12699 PMT for LXe TPC

- Higher granularity while maintaining low dark noise: best of both large PMT and SiPM
 - Improved position reconstruction for better event topology
 - 2" array has an effectively wider dynamic range for DM and DBD simultaneously
 - Faster timing for possible pulse shape analysis or Cerenkov/Scintillation separation
- Collaboration between PandaX and Hamamatsu for a low-radioactivity version of R12699

Timeline

PandaX Project Timeline	2022 2023	2024 2025	2026 20	027 2028	2029	2030	2031	2032 2	2033 2	2034 20	035 203	36 2037	2038	2039	2040	2041	2042
Operation of PandaX-4T, and R&D for the upgrade																	
Project Phase-I: construct and operate PandaX-xT; procure xenon by stages and upgrade detector along the way while keeping high running-time; 20T => 43T								The same at the sa									
Project Phase-II: with isotopically separated xenon (versatile configurations)																	
							ninonnit transpannit transpannit trans										
	2	20T										4	3T				

PandaX-xT 20T stage

- Mostly funded
- Detector prototyping and construction in progress
- More at PandaX-xT Open Meeting: https://indico-tdli.sjtu.edu.cn/event/2934

PandaX-xT for 0vββ

PANDA X
PARTICLE AND ASTROPHYSICAL XENON TPC

- 4 ton of 136 Xe: one of the largest $0v\beta\beta$ experiments
- Effective self-shielding: Xenon-related background dominates in the 8.4-tonne center FV

	Baseline (1/tonne/year)	Ideal (1/tonne/year)
Photosensors	1.4×10^{-2}	2.8×10^{-3}
Copper vessel	3.2×10^{-2}	6.3×10^{-3}
²²² Rn	4.5×10^{-2}	-
¹³⁶ Xe DBD	5.2×10 ⁻⁴	5.2×10^{-4}
¹³⁷ Xe	8.7×10^{-4}	8.7×10^{-4}
Solar 8 B ν	1.4×10^{-2}	1.4×10^{-2}
Total	1.1×10 ⁻¹	2.4×10^{-2}

Head-to-head with other DM/0 $\nu\beta\beta$ experiments

	Bkg rate (/keV/ton/y)	Energy resolution	Mass (ton) Run time		Sensitivity/Limit (90% CL, year)
PandaX-4T	6	1.9%	4	94.9 days	> 10 ²⁴
XENONnT	1	0.8%	6	1000 days (expected)	2 × 10 ²⁵
LZ	0.3	1%	7	1000 days (expected)	1 × 10 ²⁶
KamLAND-ZEN	0.002	5%	0.8 (¹³⁶ Xe)	1.5 years	2.3×10^{26}
nEXO	0.006	1%	5 (¹³⁶ Xe)	10 years	1.35 × 10 ^{28 **}
DARWIN/XLZD	~ 0.004*/2E-4	0.8%/0.6%	40/80	10 years	$2 \times 10^{27}/1.35 \times 10^{28}$
PandaX-xT	0.002*	1%	43	10 years	3×10 ²⁷

^{*} Major difference from cosmogenic ¹³⁷Xe; ** $\frac{S}{\sqrt{B}}$ sensitivity is 6×10²⁷ yr, for detector performance comparison in the table.

PandaX 0vββ HAN, Ke (SJTU)

$0\nu\beta\beta + 0\nu\beta\beta$ -ES

- Future 0vββ projects:
 - Modular solid-state detectors (LEGEND, CUPID, etc)
 - Liquid scintillator detectors (K2Z, JUNO)
 - Xenon TPC (PandaX, XLZD)
- Xenon TPC is the most effective technology to detect $0\nu\beta\beta$ -ES
 - tag beta + gamma
 - Less background-prone
- A combined analysis of $0\nu\beta\beta$ + $0\nu\beta\beta$ -ES helps improve the sensitivity to $m_{\beta\beta}$.
 - Chenrong Ding, KH, Shaobo Wang, Jiangming Yao

Possible isotope seperation/enrichment

- Xenon with artificially modified isotopic abundance (AMIA) for smoking gun discovery
 - A split of odd and even nuclei
 - Further enrichment of ¹³⁶Xe
 - to improve sensitivity to spin-dependence of DM-nucleon interactions and 0vββ

Double beta decay with PandaX natural xenon TPC

- 0νββ: important neutrino physics topic
- Competitive results from PandaX-4T
- Exciting future with PandaX-xT

SS vs. MS

- MeV gamma events are mostly multiple-scattering events;
 while signals (DBD) are mostly single site (SS)
- Identifying Multi-Site (MS) events with PMT waveforms
- Width of waveforms dominated by Z (electron diffusion)

Extending energy from keV to O(100 keV) - O(MeV)

- PMT desaturation for large S2 signals
- Improvement of X-Y position reconstruction, energy linearity and energy resolution
- No longer an issue in Run 2

SS Fraction (SS/Total) determination

- Data-driven S2 waveform simulation + data processing
- SS fraction uncertainty is estimated by comparison MC/data of ²³²Th calibration
- Spectrum average of the absolute bin-by-bin deviation between data and MC taken as SS fraction uncertainty

Likelihood and Systematics

- Binned Poisson likelihood with Gaussian penalty terms to constrain nuisance parameters
- Systematics include three categories: energy response, overall efficiency, ¹³⁶Xe mass
- ¹³⁶Xe mass uncertainties: abundance from RGA measurement; FV mass from the non-uniformity of ^{83m}Kr + LXe density fluctuation

$$L = \prod_{r}^{N_{run}} \prod_{i}^{N_{region}} \prod_{j}^{N_{bins}} \frac{(N_{rij})^{N_{rij}^{obs}}}{N_{rij}^{obs}!} e^{-N_{rij}}$$

$$\cdot \prod_{r}^{N_{run}} [\mathcal{G}(\mathcal{M}_r; \mathcal{M}_r^0, \Sigma_r^{\mathcal{M}}) \cdot \prod_{k}^{N_{eff}} G(\eta_r^k; 0, \sigma_r^k)]$$

$$\cdot \prod_{b}^{N_{bkg}} G(\eta^b; 0, \sigma^b)$$

$$N_{rij} = (1 + \eta_r^o) \cdot [(1 + \eta_r^s) \cdot n_r^s \cdot S_{ijr}$$

$$+ \sum_{b}^{N_{bkg}} (1 + \eta^b) \cdot n_r^b \cdot B_{ijr}^b]$$

Sources -		Values	
3	ources	Run0	Run1
Energy response	$a [\mathrm{keV^{-1}}]$	$(4.2 \pm 1.0) \times 10^{-6}$	$(1.1 \pm 1.4) \times 10^{-6}$
	b	0.992 ± 0.002	0.997 ± 0.004
	c [keV]	0.90 ± 0.32	1.4 ± 1.5
	d [√keV]	0.259 ± 0.046	0.46 ± 0.25
	$e [\text{keV}^{-1}]$	$(1.1 \pm 1.5) \times 10^{-6}$	$(8.8 \pm 22.2) \times 10^{-1}$
	f	$(9.7 \pm 3.5) \times 10^{-3}$	$(7.4 \pm 10.0) \times 10^{-1}$
Overall officion ov	136 Xe $0\nu\beta\beta$ SS fraction	$(87.1 \pm 11.3)\%$	$(87.3 \pm 7.0)\%$
Overall efficiency	Quality cut	$(99.89 \pm 0.10)\%$	$(99.97 \pm 0.02)\%$
¹³⁶ Xe mass	¹³⁶ Xe abundance	(8.58 ±	: 0.11)%
Ac illass	FV mass [kg]	735 ± 3	735 ± 14
Background model		Table. 2	

Data selection

- An identical FV as in ¹³⁶Xe analysis, total isotopic exposure: 17.9 kg·yr
- Single site vs multi-site selection measured by ²³²Th calibration data
 - Little impact to DBD signals (β SS events)

PandaX, Phys.Rev.Lett. 132 (2024) 15, 152502

Signal efficiencies

- 134 Xe $2\nu\beta\beta$ and $0\nu\beta\beta$ events generated with the theoretical calculation
- The signal events went through PandaX-4T simulation and data processing chain

- ROI [200,1000]keV cut:
 - $2\nu\beta\beta$: 60.56%
 - $0\nu\beta\beta$: 99.98%

- SS ratio in ROI:
 - $2\nu\beta\beta$: 99.89%
 - $0\nu\beta\beta$: 98.23%

Physical Review C 85, 034316 (2012)

Background model

	Component	Input Counts	Constraint	
	⁶⁰ Co	130	13%	
Materials	⁴⁰ K	133	8%	
	²³² Th	950	5%	Measured in 136 Xe $2 uetaeta$ analysis
	²³⁸ U	274	8%	Research 2022 (2022) 9798721
	¹³⁶ Xe	12372	5%	
	²¹² Pb	1012	29%	Measured by its daughter ²¹² Po alpha decay
	⁸⁵ Kr	296	52%	Determined by $\beta\gamma$ emission through the metastable state ^{85m}Rb
LXe	¹³³ Xe	3423	10%	Estimated the β + γ shoulder of 133 Xe between 90 and 120 keV
	²¹⁴ Pb	19429	Free	Determined by ²²² Rn
	¹²⁵ Xe	-	Free	short-lived xenon isotopes induced by neutron calibration
	Other Xe	-	Free	¹²⁷ Xe and ^{129m} Xe

Bench test for saturation and new PMT base design. PANE

- PMT waveform saturation is studied by independent bench tests
- Desat Dark Box **Pulse Generator**
- New PMT base design to increase the dynamic range
- All PMT bases have been changed in Run2

Unified Data Reconstruction Pipeline

Optimizations in data processing:

- ➤ Recovered ~0.5% SS events by an improved time window cut
- > S1 waveform slicing to improve alpha events reconstruction
- ➤ 3.5 ms dead-time cut before ²¹⁴Po events to remove isolated ²¹⁴Bi events: ~1% background reduction and negligible data loss
- > And more...

Unified pipeline for Run0 and Run1

Reconstructed spectra of Run0 and Run1 are consistent, considering the ²²²Rn increase in Run1

Blind analysis: ROI = [2356, 2560] keV, only SS events used

Background Model

- 136 Xe $2\nu\beta\beta$ (from PandaX measured 136 Xe half-life)
- Detector material: ⁶⁰Co, ⁴⁰K, ²³²Th, ²³⁸U (from HPGe material assay), and grouped into top, side, and bottom parts
- Stainless steel platform (SSP): ²³²Th, ²³⁸U (from MS fitting)

Other background components are checked:

- ➤ Residual ²¹⁴Bi in TPC -> negligible
- ➤ Gammas of ²¹⁴Bi from LXe skin region -> negligible
- 2.5 MeV peak from ⁶⁰Co cascade gammas -> well modelled

Likelihood and Systematics

- Binned Poisson likelihood with Gaussian penalty terms to constrain nuisance parameters
- Systematics include three categories: energy response, overall efficiency, ¹³⁶Xe mass
- Background model and systematics are included in likelihood fitting

$$L = \prod_{r}^{N_{run}} \prod_{i}^{N_{region}} \prod_{j}^{N_{bins}} \frac{(N_{rij})^{N_{rij}^{obs}}}{N_{rij}^{obs}!} e^{-N_{rij}}$$

$$\cdot \prod_{r}^{N_{run}} [\mathcal{G}(\mathcal{M}_r; \mathcal{M}_r^0, \Sigma_r^{\mathcal{M}}) \cdot \prod_{k}^{N_{eff}} G(\eta_r^k; 0, \sigma_r^k)]$$

$$\cdot \prod_{b}^{N_{bkg}} G(\eta^b; 0, \sigma^b)$$

$$N_{rij} = (1 + \eta_r^o) \cdot [(1 + \eta_r^s) \cdot n_r^s \cdot S_{ijr}$$

$$+ \sum_{b}^{N_{bkg}} (1 + \eta^b) \cdot n_r^b \cdot B_{ijr}^b]$$

Sources		Values	
		Run0	Run1
Energy response	$a [\mathrm{keV^{-1}}]$	$(4.2 \pm 1.0) \times 10^{-6}$	$(1.1 \pm 1.4) \times 10^{-6}$
	b	0.992 ± 0.002	0.997 ± 0.004
	c [keV]	0.90 ± 0.32	1.4 ± 1.5
	<i>d</i> [√keV]	0.259 ± 0.046	0.46 ± 0.25
	e [keV ⁻¹]	$(1.1 \pm 1.5) \times 10^{-6}$	$(8.8 \pm 22.2) \times 10^{-7}$
	f	$(9.7 \pm 3.5) \times 10^{-3}$	$(7.4 \pm 10.0) \times 10^{-3}$
Overall efficiency	136 Xe $0\nu\beta\beta$ SS fraction	$(87.1 \pm 11.3)\%$	$(87.3 \pm 7.0)\%$
	Quality cut	$(99.89 \pm 0.10)\%$	$(99.97 \pm 0.02)\%$
¹³⁶ Xe mass	¹³⁶ Xe abundance	$(8.58 \pm 0.11)\%$	
At mass	FV mass [kg]	735 ± 3	735 ± 14
Background model		Table. 2	

- ¹³⁶Xe abundance is measured by RGA with xenon samples from detector
- FV mass uncertainty is estimated from the nonuniformity of 83mKr calibration data distribution, plus the LXe density fluctuation (pressure fluctuation) during HAN, Reasta, taking

PandaX 0vβ_P 48

Background counts and parameter pulls

Background counts in the ROI

Background	Model expectation	Blinded fit	Unblinded fit
SSP ²³² Th	527 ± 45	470 ± 34	458 ± 33
$SSP^{238}U$	50 ± 15	38 ± 11	39 ± 11
²³² Th	375 ± 224	510 ± 34	485 ± 31
^{238}U	78 ± 42	70 ± 9	72 ± 9
⁶⁰ Co	18 ± 7	31 ± 3	31 ± 3
¹³⁶ Xe	0.18 ± 0.01	0.19 ± 0.01	0.19 ± 0.01

- \triangleright All pulls of nuisance parameters fall within the $\pm 2\sigma$ range
- ➤ All best-fit nuisance parameters are consistent between the blinded and unblinded fits
- Pull of top ⁶⁰Co reaches 1.8σ, indicating that the model expectation from the HPGe material assay might be slightly underestimated

Fiducial Volume (FV)

- FV is optimized by maximizing the FoM
- $FoM \propto \frac{m}{\sqrt{B}}$
- FV is further divided into four regions to better constrain detector material background from top, side, and bottom parts

Energy Response Model

Residual shift between simulated energy and reconstructed energy

$$E = a \cdot \hat{E}^2 + b \cdot \hat{E} + c.$$

- Energy resolution vs. reconstructed energy
- Response model from physics data in slim regions outside FV
- Model parameters naturally included in the likelihood fitting

