第一届中微子、原子核物理和新物理研讨会(vNN2025) # Neutrinoless Double beta decay with Pandax HAN, Ke 韩柯 (SJTU) For the PandaX Collaboration// 2025/7/23 #### Outline 1. Introduction to PandaX and liquid xenon TPC #### 2. PandaX-4T - 1. 134 Xe 2νββ (0νββ) results - 2. ¹³⁶Xe 0vββ limits - 3. ¹³⁶Xe decay to excited states and ¹²⁴Xe double electron capture - 3. Future: PandaX-xT # PandaX: Particle and astrophysical Xenon Experiment #### PandaX-4T - A multi-ton dual-phase xenon TPC at B2 hall of China Jinping Underground Laboratory - 1.2 m (D) ×1.2 m (H); Sensitive volume: 3.7-ton LXe; 3-inch PMTs: 169 top / 199 bottom - Water shielding #### PandaX-4T timeline | 2020/11 – 2021/04 | Commissioning (Run 0) 95 days data | |-------------------|--| | 2021/07 – 2021/10 | Tritium removal xenon distillation, gas flushing, etc. | | 2021/11 – 2022/05 | Physics run (Run 1)
164 days data | | 2022/09 – 2023/12 | CJPL B2 hall construction xenon recuperation, detector upgrade | Detector is taking Run 2 data PandaX 0νββ HAN, Ke (SJTU) # Liquid Xenon Time Projection Chamber (LXe TPC) - Prompt scintillation signal (S1) followed by drift electron signal (S2) - Measures the 3D position, energy, and time - Nuclear Recoil (NR) and electron recoil (ER) discrimination - Single-site (SS) and multi-site (MS) event discrimination - Large monolithic target: High signal efficiency and effective self-shielding • LXe TPC as a Total-Absorption 5D Calorimeter ¹³⁶Xe DBD # PandaX Analysis in MHE region ¹³⁴Xe DBD 124Xe 2nDEC 124Xe OnDEC Full range ER spectrum: exotic BSM physics, nuclear physics Solar 8B neutrino WIMP and other dark matter Existing Analysis at low energy # 134 Xe 2 ν β β and 0 ν β β - Q=826 keV; Half-life from theoretical predictions: 10^{24} - 10^{25} yr; Never been observed - Previous $2v\beta\beta$ ($0v\beta\beta$) half-life limit from EXO-200 : $T > 8.7x10^{20}$ yr ($1.1x10^{23}$ yr) at 90% CL - Discovery within reach with a natural Xe TPC #### ¹³⁴Xe (0)2νββ searches at PandaX-4T - Q=826 keV; Half-life from theoretical predictions: 10²⁴-10²⁵ yr; Never been observed - Previous $2\nu\beta\beta$ ($0\nu\beta\beta$) half-life limit from EXO-200 : $T > 8.7 \times 10^{20}$ yr (1.1×10^{23} yr) at 90% CL - PandaX-4T: more ¹³⁴Xe; much less ¹³⁶Xe; wider energy range; discovery possible | | PandaX-4T | EXO-200 | |-----------------------------|-----------|----------| | ¹³⁴ Xe mass | 68.7 kg | 18.1 kg | | ¹³⁶ Xe abundance | 8.90% | 81% | | Analysis threshold | 200 keV | 460 keV | | Live Time | 94.9 days | 600 days | # ¹³⁴Xe half-life limits @ PandaX-4T - Simultaneous fit for ¹³⁴Xe $2\nu\beta\beta$ and $0\nu\beta\beta$ - Final counts of $2\nu\beta\beta$ and $0\nu\beta\beta$: $10\pm269(\text{stat.})\pm680(\text{syst.})$ and $105\pm48(\text{stat.})\pm38(\text{syst.})$ - 90% CL lower limits on the half-life: $T_{1/2}^{2\nu\beta\beta} > 2.8 \cdot 10^{22} \text{ yr}$ and $T_{1/2}^{0\nu\beta\beta} > 3.0 \cdot 10^{23} \text{ yr}$ PRL 132, 152502 (2024) ¹³⁶Xe DBD # PandaX Analysis in MHE region ¹³⁴Xe DBD 124Xe 2nDEC 124Xe OnDEC Full range ER spectrum: exotic BSM physics, nuclear physics keV 10 keV 100 keV Solar 8B neutrino WIMP and other dark matter Existing Analysis at low energy #### Search for ¹³⁶Xe 0vββ with natural Xe TPC | | Bkg rate
(/keV/ton/y) | Energy resolution | FV mass (kg) | Live time | Sensitivity/Limit
(90% CL, year) | Year | |-----------|--------------------------|-------------------|--------------|-----------|-------------------------------------|------| | PandaX-II | ~200 | 4.2% | 219 | 403 days | 2.4 ×10 ²³ | 2019 | | XENON1T | ~20 | 0.8% | 741 | 203 days | 1.2×10^{24} | 2022 | #### **Background Model** - 136 Xe $2\nu\beta\beta$ (from PandaX measured 136 Xe half-life) - Detector material: ⁶⁰Co, ⁴⁰K, ²³²Th, ²³⁸U (from HPGe material assay), and grouped into top, side, and bottom parts - Stainless steel platform (SSP): ²³²Th, ²³⁸U (from MS fitting) #### Stainless steel platform (SSP) contribution #### Blinded Fit and Sensitivity Goodness-of-fit: $\chi^2/NDF = 1.14$ Energy [keV] Median sensitivity is estimated by fits to toy-data, generated from background model. $$T_{1/2, sensitivity}^{0\nu\beta\beta} > 2.7 \times 10^{24} yr \text{ at } 90\% \text{ C.L.}$$ #### **Unblinded Fit and Results** - ¹³⁶Xe exposure: 44.6 kg-yr - Energy resolution @ 2615 keV: 2.0% in Run0 and 2.3% in Run1 - 136 Xe $0\nu\beta\beta$ event rate: $14\pm55\ t^{-1}yr^{-1}$, $<111\ t^{-1}yr^{-1}$ at 90% C.L. • $$T_{1/2}^{0\nu\beta\beta} > 2.1 \times 10^{24} \ yr$$ at 90% C.L. $\langle m_{\beta\beta} \rangle = (0.4 - 1.6) \ \text{eV/c}^2$ arXiv:2412.13979, Science Bulletin #### Search for ¹³⁶Xe 0vββ with natural Xe TPC | | Bkg rate
(/keV/ton/y) | Energy
resolution | FV mass (kg) | Live time | Sensitivity/Limit
(90% CL, year) | Year | |-----------|--------------------------|----------------------|--------------|-----------|-------------------------------------|------| | PandaX-II | ~200 | 4.2% | 219 | 403 days | 2.4 ×10 ²³ | 2019 | | XENON1T | ~20 | 0.8% | 741 | 203 days | 1.2×10^{24} | 2022 | | PandaX-4T | ~10 | 2.0-2.3% | 735 | 258 days | 2.1 × 10 ²⁴ | 2024 | - The most stringent constraint from a natural xenon detector - Improvement w.r.t PandaX-II by an order of magnitude and XENON1T by a factor of 1.8 - Demonstrating the potential of 136 Xe $0\nu\beta\beta$ search with next-generation multi-ten-tonne natural xenon detectors # ¹³⁶Xe Decay to excited states (ArXiv:2502.03017, JHEP) Time Drift time #### Results - $T_{1/2}^{2\nu\beta\beta-0^+}$ > 7.5 ×10²² yr at the 90% confidence level - First such result from a natural xenon detector - PandaX first MS analysis PandaX 0vββ HAN, Ke (SJTU) ¹³⁶Xe DBD # PandaX Analysis in MHE region ¹³⁴Xe DBD 124Xe 2nDEC 124Xe OnDEC Full range ER spectrum: exotic BSM physics, nuclear physics keV 10 keV 100 keV Solar 8B neutrino WIMP and other dark matter Existing Analysis at low energy #### ¹²⁴Xe double electron capture (arXiv:2411.14355, JHEP) Larger Cleaner Detector 26 #### PandaX-xT: Multi-ten-tonne Liquid Xenon Observatory - Active target: 43 tons of Xenon - Test the WIMP paradigm to the neutrino floor - Explore the Dirac/Majorana nature of neutrino - Search for astrophysical or terrestrial neutrinos and other ultra-rare interactions - Notable detector improvements: - High-granularity, low-background 2-in PMT array - Cu/Ti vessel for improved radiopurity - Inner liquid scintillator veto Outer VETO: 3000 m3 of ultrapure water Middle VETO, 1000m3 of ultrapure water Inner vessel Cu. 3-ton Outer vessel, 15-ton **Stainless** Steel 40T LXe **Photosensors** (vacuum-TPC. jacketed) 2.5mx2.5m Inner VETO: liquid scintillator, 30 ton *SCPMA* 68, 221011 (2025) #### PandaX-xT: Multi-ten-tonne Liquid Xenon Observatory - Active target: 43 tons of Xenon - Test the WIMP paradigm to the neutrino floor - Explore the Dirac/Majorana nature of neutrino - Search for astrophysical or terrestrial neutrinos and other ultra-rare interactions - Notable detector improvements: - High-granularity, low-background 2-in PMT array - Cu/Ti vessel for improved radiopurity - Inner liquid scintillator veto Distillation Tower Cryogenics and Electronics and Circulation System **DAQ System Dual-Phase Xenon Time Projection** Chamber **OVETO** Water Shielding Tank *SCPMA* 68, 221011 (2025) #### New 2" multi-anode R12699 PMT for LXe TPC - Higher granularity while maintaining low dark noise: best of both large PMT and SiPM - Improved position reconstruction for better event topology - 2" array has an effectively wider dynamic range for DM and DBD simultaneously - Faster timing for possible pulse shape analysis or Cerenkov/Scintillation separation - Collaboration between PandaX and Hamamatsu for a low-radioactivity version of R12699 # Timeline | PandaX Project Timeline | 2022 2023 | 2024 2025 | 2026 20 | 027 2028 | 2029 | 2030 | 2031 | 2032 2 | 2033 2 | 2034 20 | 035 203 | 36 2037 | 2038 | 2039 | 2040 | 2041 | 2042 | |---|-----------|-----------|---------|----------|------|------|--|--|--------|---------|---------|---------|-----------|------|------|------|------| | Operation of PandaX-4T, and R&D for the upgrade | | | | | | | | | | | | | | | | | | | Project Phase-I: construct and operate
PandaX-xT; procure xenon by stages and
upgrade detector along the way while
keeping high running-time; 20T => 43T | | | | | | | | The same at sa | | | | | | | | | | | Project Phase-II: with isotopically separated xenon (versatile configurations) | ninonnit transpannit transpannit trans | | | | | | | | | | | | | 2 | 20T | | | | | | | | | | 4 | 3T | | | | | #### PandaX-xT 20T stage - Mostly funded - Detector prototyping and construction in progress - More at PandaX-xT Open Meeting: https://indico-tdli.sjtu.edu.cn/event/2934 #### PandaX-xT for 0vββ PANDA X PARTICLE AND ASTROPHYSICAL XENON TPC - 4 ton of 136 Xe: one of the largest $0v\beta\beta$ experiments - Effective self-shielding: Xenon-related background dominates in the 8.4-tonne center FV | | Baseline (1/tonne/year) | Ideal (1/tonne/year) | |-----------------------|-------------------------|----------------------| | Photosensors | 1.4×10^{-2} | 2.8×10^{-3} | | Copper vessel | 3.2×10^{-2} | 6.3×10^{-3} | | ²²² Rn | 4.5×10^{-2} | - | | ¹³⁶ Xe DBD | 5.2×10 ⁻⁴ | 5.2×10^{-4} | | ¹³⁷ Xe | 8.7×10^{-4} | 8.7×10^{-4} | | Solar 8 B ν | 1.4×10^{-2} | 1.4×10^{-2} | | Total | 1.1×10 ⁻¹ | 2.4×10^{-2} | #### Head-to-head with other DM/0 $\nu\beta\beta$ experiments | | Bkg rate
(/keV/ton/y) | Energy
resolution | Mass (ton) Run time | | Sensitivity/Limit
(90% CL, year) | |-------------|--------------------------|----------------------|--------------------------|-------------------------|--| | PandaX-4T | 6 | 1.9% | 4 | 94.9 days | > 10 ²⁴ | | XENONnT | 1 | 0.8% | 6 | 1000 days
(expected) | 2 × 10 ²⁵ | | LZ | 0.3 | 1% | 7 | 1000 days
(expected) | 1 × 10 ²⁶ | | KamLAND-ZEN | 0.002 | 5% | 0.8 (¹³⁶ Xe) | 1.5 years | 2.3×10^{26} | | nEXO | 0.006 | 1% | 5 (¹³⁶ Xe) | 10 years | 1.35 × 10 ^{28 **} | | DARWIN/XLZD | ~ 0.004*/2E-4 | 0.8%/0.6% | 40/80 | 10 years | $2 \times 10^{27}/1.35 \times 10^{28}$ | | PandaX-xT | 0.002* | 1% | 43 | 10 years | 3×10 ²⁷ | ^{*} Major difference from cosmogenic ¹³⁷Xe; ** $\frac{S}{\sqrt{B}}$ sensitivity is 6×10²⁷ yr, for detector performance comparison in the table. PandaX 0vββ HAN, Ke (SJTU) #### $0\nu\beta\beta + 0\nu\beta\beta$ -ES - Future 0vββ projects: - Modular solid-state detectors (LEGEND, CUPID, etc) - Liquid scintillator detectors (K2Z, JUNO) - Xenon TPC (PandaX, XLZD) - Xenon TPC is the most effective technology to detect $0\nu\beta\beta$ -ES - tag beta + gamma - Less background-prone - A combined analysis of $0\nu\beta\beta$ + $0\nu\beta\beta$ -ES helps improve the sensitivity to $m_{\beta\beta}$. - Chenrong Ding, KH, Shaobo Wang, Jiangming Yao #### Possible isotope seperation/enrichment - Xenon with artificially modified isotopic abundance (AMIA) for smoking gun discovery - A split of odd and even nuclei - Further enrichment of ¹³⁶Xe - to improve sensitivity to spin-dependence of DM-nucleon interactions and 0vββ # Double beta decay with PandaX natural xenon TPC - 0νββ: important neutrino physics topic - Competitive results from PandaX-4T - Exciting future with PandaX-xT #### SS vs. MS - MeV gamma events are mostly multiple-scattering events; while signals (DBD) are mostly single site (SS) - Identifying Multi-Site (MS) events with PMT waveforms - Width of waveforms dominated by Z (electron diffusion) # Extending energy from keV to O(100 keV) - O(MeV) - PMT desaturation for large S2 signals - Improvement of X-Y position reconstruction, energy linearity and energy resolution - No longer an issue in Run 2 ## SS Fraction (SS/Total) determination - Data-driven S2 waveform simulation + data processing - SS fraction uncertainty is estimated by comparison MC/data of ²³²Th calibration - Spectrum average of the absolute bin-by-bin deviation between data and MC taken as SS fraction uncertainty ## Likelihood and Systematics - Binned Poisson likelihood with Gaussian penalty terms to constrain nuisance parameters - Systematics include three categories: energy response, overall efficiency, ¹³⁶Xe mass - ¹³⁶Xe mass uncertainties: abundance from RGA measurement; FV mass from the non-uniformity of ^{83m}Kr + LXe density fluctuation $$L = \prod_{r}^{N_{run}} \prod_{i}^{N_{region}} \prod_{j}^{N_{bins}} \frac{(N_{rij})^{N_{rij}^{obs}}}{N_{rij}^{obs}!} e^{-N_{rij}}$$ $$\cdot \prod_{r}^{N_{run}} [\mathcal{G}(\mathcal{M}_r; \mathcal{M}_r^0, \Sigma_r^{\mathcal{M}}) \cdot \prod_{k}^{N_{eff}} G(\eta_r^k; 0, \sigma_r^k)]$$ $$\cdot \prod_{b}^{N_{bkg}} G(\eta^b; 0, \sigma^b)$$ $$N_{rij} = (1 + \eta_r^o) \cdot [(1 + \eta_r^s) \cdot n_r^s \cdot S_{ijr}$$ $$+ \sum_{b}^{N_{bkg}} (1 + \eta^b) \cdot n_r^b \cdot B_{ijr}^b]$$ | Sources - | | Values | | |------------------------|--|--------------------------------|---------------------------------| | 3 | ources | Run0 | Run1 | | Energy response | $a [\mathrm{keV^{-1}}]$ | $(4.2 \pm 1.0) \times 10^{-6}$ | $(1.1 \pm 1.4) \times 10^{-6}$ | | | b | 0.992 ± 0.002 | 0.997 ± 0.004 | | | c [keV] | 0.90 ± 0.32 | 1.4 ± 1.5 | | | d [√keV] | 0.259 ± 0.046 | 0.46 ± 0.25 | | | $e [\text{keV}^{-1}]$ | $(1.1 \pm 1.5) \times 10^{-6}$ | $(8.8 \pm 22.2) \times 10^{-1}$ | | | f | $(9.7 \pm 3.5) \times 10^{-3}$ | $(7.4 \pm 10.0) \times 10^{-1}$ | | Overall officion ov | 136 Xe $0\nu\beta\beta$ SS fraction | $(87.1 \pm 11.3)\%$ | $(87.3 \pm 7.0)\%$ | | Overall efficiency | Quality cut | $(99.89 \pm 0.10)\%$ | $(99.97 \pm 0.02)\%$ | | ¹³⁶ Xe mass | ¹³⁶ Xe abundance | (8.58 ± | : 0.11)% | | Ac illass | FV mass [kg] | 735 ± 3 | 735 ± 14 | | Background model | | Table. 2 | | #### Data selection - An identical FV as in ¹³⁶Xe analysis, total isotopic exposure: 17.9 kg·yr - Single site vs multi-site selection measured by ²³²Th calibration data - Little impact to DBD signals (β SS events) PandaX, Phys.Rev.Lett. 132 (2024) 15, 152502 ## Signal efficiencies - 134 Xe $2\nu\beta\beta$ and $0\nu\beta\beta$ events generated with the theoretical calculation - The signal events went through PandaX-4T simulation and data processing chain - ROI [200,1000]keV cut: - $2\nu\beta\beta$: 60.56% - $0\nu\beta\beta$: 99.98% - SS ratio in ROI: - $2\nu\beta\beta$: 99.89% - $0\nu\beta\beta$: 98.23% Physical Review C 85, 034316 (2012) # Background model | | Component | Input Counts | Constraint | | |-----------|-------------------|--------------|------------|---| | | ⁶⁰ Co | 130 | 13% | | | Materials | ⁴⁰ K | 133 | 8% | | | | ²³² Th | 950 | 5% | Measured in 136 Xe $2 uetaeta$ analysis | | | ²³⁸ U | 274 | 8% | Research 2022 (2022) 9798721 | | | ¹³⁶ Xe | 12372 | 5% | | | | ²¹² Pb | 1012 | 29% | Measured by its daughter ²¹² Po alpha decay | | | ⁸⁵ Kr | 296 | 52% | Determined by $\beta\gamma$ emission through the metastable state ^{85m}Rb | | LXe | ¹³³ Xe | 3423 | 10% | Estimated the β + γ shoulder of 133 Xe between 90 and 120 keV | | | ²¹⁴ Pb | 19429 | Free | Determined by ²²² Rn | | | ¹²⁵ Xe | - | Free | short-lived xenon isotopes induced by neutron calibration | | | Other Xe | - | Free | ¹²⁷ Xe and ^{129m} Xe | # Bench test for saturation and new PMT base design. PANE - PMT waveform saturation is studied by independent bench tests - Desat Dark Box **Pulse Generator** - New PMT base design to increase the dynamic range - All PMT bases have been changed in Run2 # Unified Data Reconstruction Pipeline #### **Optimizations in data processing:** - ➤ Recovered ~0.5% SS events by an improved time window cut - > S1 waveform slicing to improve alpha events reconstruction - ➤ 3.5 ms dead-time cut before ²¹⁴Po events to remove isolated ²¹⁴Bi events: ~1% background reduction and negligible data loss - > And more... #### Unified pipeline for Run0 and Run1 Reconstructed spectra of Run0 and Run1 are consistent, considering the ²²²Rn increase in Run1 Blind analysis: ROI = [2356, 2560] keV, only SS events used ## **Background Model** - 136 Xe $2\nu\beta\beta$ (from PandaX measured 136 Xe half-life) - Detector material: ⁶⁰Co, ⁴⁰K, ²³²Th, ²³⁸U (from HPGe material assay), and grouped into top, side, and bottom parts - Stainless steel platform (SSP): ²³²Th, ²³⁸U (from MS fitting) Other background components are checked: - ➤ Residual ²¹⁴Bi in TPC -> negligible - ➤ Gammas of ²¹⁴Bi from LXe skin region -> negligible - 2.5 MeV peak from ⁶⁰Co cascade gammas -> well modelled ## Likelihood and Systematics - Binned Poisson likelihood with Gaussian penalty terms to constrain nuisance parameters - Systematics include three categories: energy response, overall efficiency, ¹³⁶Xe mass - Background model and systematics are included in likelihood fitting $$L = \prod_{r}^{N_{run}} \prod_{i}^{N_{region}} \prod_{j}^{N_{bins}} \frac{(N_{rij})^{N_{rij}^{obs}}}{N_{rij}^{obs}!} e^{-N_{rij}}$$ $$\cdot \prod_{r}^{N_{run}} [\mathcal{G}(\mathcal{M}_r; \mathcal{M}_r^0, \Sigma_r^{\mathcal{M}}) \cdot \prod_{k}^{N_{eff}} G(\eta_r^k; 0, \sigma_r^k)]$$ $$\cdot \prod_{b}^{N_{bkg}} G(\eta^b; 0, \sigma^b)$$ $$N_{rij} = (1 + \eta_r^o) \cdot [(1 + \eta_r^s) \cdot n_r^s \cdot S_{ijr}$$ $$+ \sum_{b}^{N_{bkg}} (1 + \eta^b) \cdot n_r^b \cdot B_{ijr}^b]$$ | Sources | | Values | | |------------------------|--|--------------------------------|---------------------------------| | | | Run0 | Run1 | | Energy response | $a [\mathrm{keV^{-1}}]$ | $(4.2 \pm 1.0) \times 10^{-6}$ | $(1.1 \pm 1.4) \times 10^{-6}$ | | | b | 0.992 ± 0.002 | 0.997 ± 0.004 | | | c [keV] | 0.90 ± 0.32 | 1.4 ± 1.5 | | | <i>d</i> [√keV] | 0.259 ± 0.046 | 0.46 ± 0.25 | | | e [keV ⁻¹] | $(1.1 \pm 1.5) \times 10^{-6}$ | $(8.8 \pm 22.2) \times 10^{-7}$ | | | f | $(9.7 \pm 3.5) \times 10^{-3}$ | $(7.4 \pm 10.0) \times 10^{-3}$ | | Overall efficiency | 136 Xe $0\nu\beta\beta$ SS fraction | $(87.1 \pm 11.3)\%$ | $(87.3 \pm 7.0)\%$ | | | Quality cut | $(99.89 \pm 0.10)\%$ | $(99.97 \pm 0.02)\%$ | | ¹³⁶ Xe mass | ¹³⁶ Xe abundance | $(8.58 \pm 0.11)\%$ | | | At mass | FV mass [kg] | 735 ± 3 | 735 ± 14 | | Background model | | Table. 2 | | | | | | | - ¹³⁶Xe abundance is measured by RGA with xenon samples from detector - FV mass uncertainty is estimated from the nonuniformity of 83mKr calibration data distribution, plus the LXe density fluctuation (pressure fluctuation) during HAN, Reasta, taking PandaX 0vβ_P 48 ## Background counts and parameter pulls #### Background counts in the ROI | Background | Model expectation | Blinded fit | Unblinded fit | |-----------------------|-------------------|-----------------|-----------------| | SSP ²³² Th | 527 ± 45 | 470 ± 34 | 458 ± 33 | | $SSP^{238}U$ | 50 ± 15 | 38 ± 11 | 39 ± 11 | | ²³² Th | 375 ± 224 | 510 ± 34 | 485 ± 31 | | ^{238}U | 78 ± 42 | 70 ± 9 | 72 ± 9 | | ⁶⁰ Co | 18 ± 7 | 31 ± 3 | 31 ± 3 | | ¹³⁶ Xe | 0.18 ± 0.01 | 0.19 ± 0.01 | 0.19 ± 0.01 | - \triangleright All pulls of nuisance parameters fall within the $\pm 2\sigma$ range - ➤ All best-fit nuisance parameters are consistent between the blinded and unblinded fits - Pull of top ⁶⁰Co reaches 1.8σ, indicating that the model expectation from the HPGe material assay might be slightly underestimated ## Fiducial Volume (FV) - FV is optimized by maximizing the FoM - $FoM \propto \frac{m}{\sqrt{B}}$ - FV is further divided into four regions to better constrain detector material background from top, side, and bottom parts ### **Energy Response Model** Residual shift between simulated energy and reconstructed energy $$E = a \cdot \hat{E}^2 + b \cdot \hat{E} + c.$$ - Energy resolution vs. reconstructed energy - Response model from physics data in slim regions outside FV - Model parameters naturally included in the likelihood fitting