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Outline

• From chiral Lagrangian to nuclear forces 

• Simplifying EFT nuclear forces: 

• Towards perturbative-pion interaction: Why and How?



粒⼦物理与核物理结合，⼤有可为



Multipole expansion 
A classical example of EFT

R

• Separation of scales:  R >> r0

charge 
distribution

r0

• Controlled approximation, able to estimate uncertainty

• Naturalness

• What if it is a rod? 
Slow convergence of a regular PC ⇒ possible fine-tuning ⇒ change PC

⇒ power counting based on 
naive dim. analysis (NDA)

Observer
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Chiral EFT

Standard Model

beyond SM

Hierarchy of EFTs

Pionless EFT
Halo
Cluster

Momentum / Energy



Relay: from quarks & gluons to Uranium

Many-body methods

Chiral EFTs Lattice QCD

A: number of nucleons ↑

2H & 3H

Light nuclei : 
A = 4 ~ 12

Low-energy constants

Cluster/Halo EFTs/Other EFTs



QCD → Chiral Lagrangian

CCWZ; Weinberg; …

ℒQCD =
External sources: v, a, s, ps

Constraints by chiral symmetry

nonlinear realization

CD

+ …

� gA
2f⇡

N†⌧a~� · ~r⇡aN

Wavy lines: axial currents



Potential diagrams

• Many contact terms parametrizing NN short-range 
forces, e.g.,

V3P0 = c3P0
0 pp0 + · · ·

V1S0 = c1S0
0 + c1S0

2 (p2 + p02) + · · ·
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that have been integrated out. The simplest are two contact
interactions,

Vc = 1
4π

1
(2π )3

(csPs + ctPt ), (3)

where we used the projectors onto spin-triplet and spin-singlet
states, Pt and Ps . The two strength parameters cs and ct need
to be determined from NN scattering data, for instance from
the scattering lengths in the 1S0 and 3S1 channels. It is possible
to write

cs = C0 + m2
πD2 + . . . , (4)

where the parameters C0 and D2 are independent of the quark
masses.

For the numerical solution of the LS equation, we need to
introduce a regulator f (p′, p) that effectively cuts momenta
at a cutoff ". The regularization procedure is an arbitrary
splitting of short-range physics into the high-momentum
region of loops and contact interactions. Low-energy physics
should, of course, be independent of the choice of regulator
(renormalization-group invariance), once the dependence of
contact parameters on the cutoff is taken into account, and
the cutoff is much larger than the momenta of interest. It is
convenient for the partial-wave decomposition to perform the
regularization using momentum cutoff functions depending on
p⃗ and p⃗ ′ rather than on q⃗. Here we use

f (p′, p) = e−(p4+p′4)/"4
. (5)

This leads to nonlocal interactions in configuration space.
However, because the regulator only depends on the magnitude
of the relative momenta, it does not influence the partial-wave
decomposition. This guarantees that contact interactions act
in specific partial waves, independent of ". In particular, it
implies that Vc only acts in the two S waves.

For the following discussion, it is useful to look also at the
configuration space expression for OPE,

V1π (r⃗ ) = m3
π

12π

(
gA

2fπ

)2

τ 1 · τ 2[T (r)S12 + Y (r)σ⃗1 · σ⃗2],

(6)
where

T (r) = e−mπ r

mπ r

[
1 + 3

mπ r
+ 3

(mπ r)2

]
,

(7)

Y (r) = e−mπ r

mπ r
,

TABLE I. Matrix elements of the operator τ 1 · τ 2 S12 for spin-
triplet channels with total angular momentum j. The matrix elements
depend on the isospin t and on the incoming and outgoing angular
momenta l and l′.

t s = 1 l = j − 1 l = j l = j + 1

t = 1 l′ = j − 1 −2 j−1
2j+1 0 6

√
j (j+1)
2j+1

l′ = j 0 2 0

l′ = j + 1 6
√

j (j+1)
2j+1 0 −2 j+2

2j+1

t = 0 l′ = j − 1 6 j−1
2j+1 0 −18

√
j (j+1)
2j+1

l′ = j 0 −6 0

l′ = j + 1 −18
√

j (j+1)
2j+1 0 6 j+2

2j+1

and the tensor operator is

S12 = 3(σ⃗1 · r̂)(σ⃗2 · r̂) − σ⃗1 · σ⃗2. (8)

The tensor force T (r) of OPE contains a singular interaction
∼1/r3 that acts in the spin-triplet waves; the tensor force is
zero in the spin-singlet channels. Using the partial-wave matrix
elements given in Table I one can identify whether the tensor
force is attractive or repulsive in specific partial waves. This
we will require in the following.

III. NUCLEON-NUCLEON PHASE SHIFTS

Our aim is to study the dependence of observables on
the chosen value for the cutoff ". We have performed a
partial-wave decomposition of the interaction described in the
previous section and then solved the LS equation and extracted
phase shifts. The explicit expressions are summarized in
Appendix A. We study the cutoff dependence of the phase
shifts in leading order (LO), or O(Q0), in Weinberg’s power
counting. We consider " in a wide range, between 2 and
20 fm−1.

We start with the S-wave channels, which were previously
examined in Refs. [41–44] with different regularizations. We
fit cs and ct to the 1S0 and 3S1 phase shifts at 10 MeV and
we confirm the cutoff independence found in Refs. [41,42], as
can been seen in Figs. 1 and 2. In Fig. 1 we show the running
of cs with the cutoff " and the resulting cutoff dependence of
the 1S0 phase shifts at various laboratory energies. In Fig. 2
we show the corresponding results for ct and the 3S1 and 3D1
phase shifts and the mixing angle ε1. One sees that the cutoff
dependence of the phase shifts is small for " >∼ 5 fm−1, but
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FIG. 1. Fit result for the counterterm cs as
a function of the cutoff, and the resulting cutoff
dependence of the 1S0 phase shifts at laboratory
energies of 10 MeV (solid line), 50 MeV (dashed
line), 100 MeV (dotted line), and 190 MeV
(dash-dotted line).
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Vc = 1
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1
(2π )3
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where we used the projectors onto spin-triplet and spin-singlet
states, Pt and Ps . The two strength parameters cs and ct need
to be determined from NN scattering data, for instance from
the scattering lengths in the 1S0 and 3S1 channels. It is possible
to write

cs = C0 + m2
πD2 + . . . , (4)

where the parameters C0 and D2 are independent of the quark
masses.

For the numerical solution of the LS equation, we need to
introduce a regulator f (p′, p) that effectively cuts momenta
at a cutoff ". The regularization procedure is an arbitrary
splitting of short-range physics into the high-momentum
region of loops and contact interactions. Low-energy physics
should, of course, be independent of the choice of regulator
(renormalization-group invariance), once the dependence of
contact parameters on the cutoff is taken into account, and
the cutoff is much larger than the momenta of interest. It is
convenient for the partial-wave decomposition to perform the
regularization using momentum cutoff functions depending on
p⃗ and p⃗ ′ rather than on q⃗. Here we use

f (p′, p) = e−(p4+p′4)/"4
. (5)

This leads to nonlocal interactions in configuration space.
However, because the regulator only depends on the magnitude
of the relative momenta, it does not influence the partial-wave
decomposition. This guarantees that contact interactions act
in specific partial waves, independent of ". In particular, it
implies that Vc only acts in the two S waves.

For the following discussion, it is useful to look also at the
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TABLE I. Matrix elements of the operator τ 1 · τ 2 S12 for spin-
triplet channels with total angular momentum j. The matrix elements
depend on the isospin t and on the incoming and outgoing angular
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The tensor force T (r) of OPE contains a singular interaction
∼1/r3 that acts in the spin-triplet waves; the tensor force is
zero in the spin-singlet channels. Using the partial-wave matrix
elements given in Table I one can identify whether the tensor
force is attractive or repulsive in specific partial waves. This
we will require in the following.
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Our aim is to study the dependence of observables on
the chosen value for the cutoff ". We have performed a
partial-wave decomposition of the interaction described in the
previous section and then solved the LS equation and extracted
phase shifts. The explicit expressions are summarized in
Appendix A. We study the cutoff dependence of the phase
shifts in leading order (LO), or O(Q0), in Weinberg’s power
counting. We consider " in a wide range, between 2 and
20 fm−1.

We start with the S-wave channels, which were previously
examined in Refs. [41–44] with different regularizations. We
fit cs and ct to the 1S0 and 3S1 phase shifts at 10 MeV and
we confirm the cutoff independence found in Refs. [41,42], as
can been seen in Figs. 1 and 2. In Fig. 1 we show the running
of cs with the cutoff " and the resulting cutoff dependence of
the 1S0 phase shifts at various laboratory energies. In Fig. 2
we show the corresponding results for ct and the 3S1 and 3D1
phase shifts and the mixing angle ε1. One sees that the cutoff
dependence of the phase shifts is small for " >∼ 5 fm−1, but
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FIG. 1. Fit result for the counterterm cs as
a function of the cutoff, and the resulting cutoff
dependence of the 1S0 phase shifts at laboratory
energies of 10 MeV (solid line), 50 MeV (dashed
line), 100 MeV (dotted line), and 190 MeV
(dash-dotted line).
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to write
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masses.

For the numerical solution of the LS equation, we need to
introduce a regulator f (p′, p) that effectively cuts momenta
at a cutoff ". The regularization procedure is an arbitrary
splitting of short-range physics into the high-momentum
region of loops and contact interactions. Low-energy physics
should, of course, be independent of the choice of regulator
(renormalization-group invariance), once the dependence of
contact parameters on the cutoff is taken into account, and
the cutoff is much larger than the momenta of interest. It is
convenient for the partial-wave decomposition to perform the
regularization using momentum cutoff functions depending on
p⃗ and p⃗ ′ rather than on q⃗. Here we use
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. (5)

This leads to nonlocal interactions in configuration space.
However, because the regulator only depends on the magnitude
of the relative momenta, it does not influence the partial-wave
decomposition. This guarantees that contact interactions act
in specific partial waves, independent of ". In particular, it
implies that Vc only acts in the two S waves.
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S12 = 3(σ⃗1 · r̂)(σ⃗2 · r̂) − σ⃗1 · σ⃗2. (8)

The tensor force T (r) of OPE contains a singular interaction
∼1/r3 that acts in the spin-triplet waves; the tensor force is
zero in the spin-singlet channels. Using the partial-wave matrix
elements given in Table I one can identify whether the tensor
force is attractive or repulsive in specific partial waves. This
we will require in the following.

III. NUCLEON-NUCLEON PHASE SHIFTS

Our aim is to study the dependence of observables on
the chosen value for the cutoff ". We have performed a
partial-wave decomposition of the interaction described in the
previous section and then solved the LS equation and extracted
phase shifts. The explicit expressions are summarized in
Appendix A. We study the cutoff dependence of the phase
shifts in leading order (LO), or O(Q0), in Weinberg’s power
counting. We consider " in a wide range, between 2 and
20 fm−1.

We start with the S-wave channels, which were previously
examined in Refs. [41–44] with different regularizations. We
fit cs and ct to the 1S0 and 3S1 phase shifts at 10 MeV and
we confirm the cutoff independence found in Refs. [41,42], as
can been seen in Figs. 1 and 2. In Fig. 1 we show the running
of cs with the cutoff " and the resulting cutoff dependence of
the 1S0 phase shifts at various laboratory energies. In Fig. 2
we show the corresponding results for ct and the 3S1 and 3D1
phase shifts and the mixing angle ε1. One sees that the cutoff
dependence of the phase shifts is small for " >∼ 5 fm−1, but
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a function of the cutoff, and the resulting cutoff
dependence of the 1S0 phase shifts at laboratory
energies of 10 MeV (solid line), 50 MeV (dashed
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to write
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f (p′, p) = e−(p4+p′4)/"4
. (5)
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However, because the regulator only depends on the magnitude
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in specific partial waves, independent of ". In particular, it
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The tensor force T (r) of OPE contains a singular interaction
∼1/r3 that acts in the spin-triplet waves; the tensor force is
zero in the spin-singlet channels. Using the partial-wave matrix
elements given in Table I one can identify whether the tensor
force is attractive or repulsive in specific partial waves. This
we will require in the following.

III. NUCLEON-NUCLEON PHASE SHIFTS

Our aim is to study the dependence of observables on
the chosen value for the cutoff ". We have performed a
partial-wave decomposition of the interaction described in the
previous section and then solved the LS equation and extracted
phase shifts. The explicit expressions are summarized in
Appendix A. We study the cutoff dependence of the phase
shifts in leading order (LO), or O(Q0), in Weinberg’s power
counting. We consider " in a wide range, between 2 and
20 fm−1.

We start with the S-wave channels, which were previously
examined in Refs. [41–44] with different regularizations. We
fit cs and ct to the 1S0 and 3S1 phase shifts at 10 MeV and
we confirm the cutoff independence found in Refs. [41,42], as
can been seen in Figs. 1 and 2. In Fig. 1 we show the running
of cs with the cutoff " and the resulting cutoff dependence of
the 1S0 phase shifts at various laboratory energies. In Fig. 2
we show the corresponding results for ct and the 3S1 and 3D1
phase shifts and the mixing angle ε1. One sees that the cutoff
dependence of the phase shifts is small for " >∼ 5 fm−1, but
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a function of the cutoff, and the resulting cutoff
dependence of the 1S0 phase shifts at laboratory
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(dash-dotted line).
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• One-pion exchange

• Tensor force dominant

Tensor F

 :r = m−1
π

• For Q << mpi —> pionless EFT w/ only contact 
interactions



Power counting for loops (HBChPT)

• Nucleon propagator — 1/Q or mN/Q2 

• Pion propagator — 1/Q2 

• Loop integral — Q4/(16π2) 

• Vertex with ν derivatives  — Qν  

• A pion loop brings a suppression factor of  
✓

Q

4⇡f⇡

◆2
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i

p0 � p2

2mN
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i

k20 � ~k2 �m2
⇡
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NN potentials from ChEFT

24 contact terms 
in NDA up to Q4 

1
M2

hi

1
M4

hi

NDA = naive dim. analysis

• Contact forces doing heavy lifting

van Kolck et al. ’92 

Entem & Machleidt ’03 

Epelbaum et al. ’99   

Pastore, Piarulli, et al. ’09 

Ekstrom, et al. ’13 

…
To promote, or not to promote ?



Strength of OPE

• Focus on loop momenta ~ external momenta Q 

• Pion line or photon line ~ 1/Q2 , nucleon line in irreducible diagrams ~ 1/Q 

• Nucleon line in reducible diagrams ~ mN/Q2   
⇒ Explain why we solve the Schrodinger eqn 
⇒ Explain why nuclei bound 

• Strength of OPE ~  (numerical factor  for small l,  for 
large l by centrifugal  suppression)

al fπ al ∼ 1 al ≫ 1

⇠ 1

f2
⇡

Q2

m2
⇡ +Q2

⇠ 1

f2
⇡

⇠ 1

f2
⇡

mN

4⇡f⇡

Q

alf⇡
<latexit sha1_base64="U5/4yffCC2wNEfDDAdwAtLy3+fo="></latexit>

Q ∼ mπTypical size of external momenta:

NN reducible



Power counting: short-range physics

• Strength of OPE  may have impact on contacts through 
renormalization 

• Coexistence of  and  makes NDA no longer reliable 

• Operators gaining large anomalous dimension through nuclear 
dynamics → “irrelevant” operators become relevant

al fπ

al fπ Mhi

⇠ 1

f2
⇡

mN

4⇡f⇡

Q

alf⇡
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Renormalizing



UV cutoff
• “NN Potential”: two-nucleon irreducible diagrams

…V =

• Lippmann-Schwinger eqn (equivalent to Schrodinger eqn)

= +T V V T

= +T V V V + …

Λ: UV cutoff



Lippmann-Schwinger equation

= +T V V T

<latexit sha1_base64="mQ9ZWluD55kKgp3ZEn4DkfT+/P8="></latexit>

T (~p 0, ~p) = V (~p 0, ~p) +

Z
d3l

(2⇡)3
V (~p 0,~l)

T (~l, ~p)

E �~l2/mN + i✏

• Nucleons only propagate “forward”, so l0 can be integrated out 
Otherwise, antifermion-fermion pairs make this a many-body problem 

• p << mN, relativistic corrections added as perturbations 

• A = 3, 4 … nonrelativistic few-body diagrams similarly resummed 

• Regularized by UV cutoffs, numerically solved



Renormalization group and power counting

• Power counting of subleading pot. = how (ir)relevant they are in  
Wilson's RG   
 

• Program1: Explicitly solving RG equation → PC of contacts  
 

• Program 2: Speculating a PC and testing it against cutoff indep  
    → one possible solution of RGE, thus an acceptable PC

Birse et al. ’99 

Pavon Valderrama & Phillips ‘15



Renormalizing singular attraction

V r

Λ-1

VL ∝ −
1
r3

Unphysical 
bound states

⟹

Beane et al ’01 
Pavon Valderrama & Ruiz Arriola ’05, ’07  
Nogga et al ’05  
BwL & van Kolck ’07 

Modify PC
V r

Λ-1 VL ∝ −
1
r3

Vs

Regularized 
contact potentials



C3P0~p · ~p0 ⇠
Q2

m2
hi

C3P0~p · ~p0 ⇠
Q2

m2
lo

Renormalizing singular attraction

promote

• Manifestation via cutoff dependence
Nogga, Timmerman & van Kolck (2005)
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FIG. 8. Binding energies of the spurious bound states in selected
attractive triplet channels, before the introduction of the required
counterterms.

at other energies are cutoff independent for ! >∼ 8 fm−1.
Figures 11 and 12 summarize the analogous results for the
3P2-3F2 and 3D2 partial waves, respectively. The fits were
performed using the 3P2 phase shift at 50 MeV and the 3D2
phase shift at 100 MeV. We confirm the cutoff independence
(for large !) in all phase shifts and mixing parameters.

An alternative to absorbing the cutoff dependence in
the various P waves individually would be to employ one
counterterm with tensor structure. Unfortunately, we have not
been able to implement this idea without introducing cutoff
dependence in the 3P1 wave.

After removing the cutoff dependence by adding appro-
priate counterterms, we still find spurious bound states in
the 3P0,

3 D2, and also the 3S1-3D1 channels. However, the
cutoff dependence of the binding energies is now completely
different, as shown in Fig. 13. As desired, only 3S1-3D1 has a
shallow bound state, the deuteron, which is cutoff independent
over almost the entire ! range; the deuteron binding energy is
predicted to be 1.92 MeV in this LO calculation. The bound
states in the other channels are all very deep. A new bound
state appears with infinite binding energy around the cutoff
at which the corresponding counterterm is singular, and then
approaches a constant, large binding energy for increasing !.

These bound states are beyond the range of the EFT, and they
are irrelevant for the low-energy physics.

With the added counterterms, we obtain a very decent
description of the phase shifts. Figure 14 shows that our 3P0
result follows the energy dependence of the Nijmegen PWA
remarkably well. Obviously, the addition of the counterterm
is here supported by the experimental data. In the coupled
3P2-3F2 channels the agreement with the PWA below 50 MeV
is still satisfactory. We emphasize that the 3F2 phase and
the mixing parameter ε2 are predictions. Choosing a high
cutoff ! clearly does not compromise the description of these
observables

For the 3D2 phase (see Fig. 15), we find again a good
agreement with the PWA. Here, we also included the prediction
based on a calculation without a counterterm, for ! =
8.0 fm−1 in the plateau region of Fig. 9. For low energies below
50 MeV, the results are comparable. The deviations from the
PWA become significant toward higher energies, where the
plateau seen in Fig. 9 is more and more tilted. For these higher
energies, the counterterm again improves the predictions.

Our overview is completed in Figs. 15 and 16 with the
3D3-3G3,

3 F4-3H4, and 3G4 channels. In these partial waves
there is a relatively small cutoff dependence in the ! range
that we studied (although presumably cutoff dependence will
become significant at cutoffs high enough to bring in spurious
bound states). In all cases the agreement with the PWA is
improved when we increase the cutoff from the traditional
values around 2.5 fm−1 [16] to our higher values. This is
especially true for the 3D3 partial wave, which, for our higher
cutoffs, becomes attractive for higher energies.

After these encouraging results, we examine the 3N bound
state in the next section.

IV. THREE-NUCLEON BOUND STATE

The power of EFT comes to bear when more nucleons
are considered. The 3N system is the first extension to
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FIG. 9. Cutoff dependence of phase shifts in
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at other energies are cutoff independent for ! >∼ 8 fm−1.
Figures 11 and 12 summarize the analogous results for the
3P2-3F2 and 3D2 partial waves, respectively. The fits were
performed using the 3P2 phase shift at 50 MeV and the 3D2
phase shift at 100 MeV. We confirm the cutoff independence
(for large !) in all phase shifts and mixing parameters.

An alternative to absorbing the cutoff dependence in
the various P waves individually would be to employ one
counterterm with tensor structure. Unfortunately, we have not
been able to implement this idea without introducing cutoff
dependence in the 3P1 wave.

After removing the cutoff dependence by adding appro-
priate counterterms, we still find spurious bound states in
the 3P0,

3 D2, and also the 3S1-3D1 channels. However, the
cutoff dependence of the binding energies is now completely
different, as shown in Fig. 13. As desired, only 3S1-3D1 has a
shallow bound state, the deuteron, which is cutoff independent
over almost the entire ! range; the deuteron binding energy is
predicted to be 1.92 MeV in this LO calculation. The bound
states in the other channels are all very deep. A new bound
state appears with infinite binding energy around the cutoff
at which the corresponding counterterm is singular, and then
approaches a constant, large binding energy for increasing !.

These bound states are beyond the range of the EFT, and they
are irrelevant for the low-energy physics.

With the added counterterms, we obtain a very decent
description of the phase shifts. Figure 14 shows that our 3P0
result follows the energy dependence of the Nijmegen PWA
remarkably well. Obviously, the addition of the counterterm
is here supported by the experimental data. In the coupled
3P2-3F2 channels the agreement with the PWA below 50 MeV
is still satisfactory. We emphasize that the 3F2 phase and
the mixing parameter ε2 are predictions. Choosing a high
cutoff ! clearly does not compromise the description of these
observables

For the 3D2 phase (see Fig. 15), we find again a good
agreement with the PWA. Here, we also included the prediction
based on a calculation without a counterterm, for ! =
8.0 fm−1 in the plateau region of Fig. 9. For low energies below
50 MeV, the results are comparable. The deviations from the
PWA become significant toward higher energies, where the
plateau seen in Fig. 9 is more and more tilted. For these higher
energies, the counterterm again improves the predictions.

Our overview is completed in Figs. 15 and 16 with the
3D3-3G3,

3 F4-3H4, and 3G4 channels. In these partial waves
there is a relatively small cutoff dependence in the ! range
that we studied (although presumably cutoff dependence will
become significant at cutoffs high enough to bring in spurious
bound states). In all cases the agreement with the PWA is
improved when we increase the cutoff from the traditional
values around 2.5 fm−1 [16] to our higher values. This is
especially true for the 3D3 partial wave, which, for our higher
cutoffs, becomes attractive for higher energies.

After these encouraging results, we examine the 3N bound
state in the next section.

IV. THREE-NUCLEON BOUND STATE

The power of EFT comes to bear when more nucleons
are considered. The 3N system is the first extension to
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FIG. 9. Cutoff dependence of phase shifts in
attractive triplet channels at laboratory energies
of 10 MeV (solid line), 50 MeV (dashed line),
and 100 MeV (dotted line).
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Solid: Tlab = 10 MeV, dashed: 50 MeV

Phase shifts vs. Λ :

• Solution: change power counting



  

But, is there a real problem?

Q^2 & Q^3

Large subleading corrections in 3P0

Nogga et al (’05)

LO
PWA

C3P0~p · ~p0 ⇠
Q2

m2
hi

C3P0~p · ~p0 ⇠
Q2

m2
lo

promote

Renormalizing singular attraction



Can we simplify these nuclear 
interactions?



A motivation: Wigner SU(4) symmetry

<latexit sha1_base64="KA36W8WIZcBtMGC0UbuFCbnOKgI="></latexit>0

BB@

p "
p #
n "
n #

1

CCA

• Approximate SU(4) invariance of nuclear forces

SU(4) transformation

• Interactions between NN pairs : (S = 0, T = 1) ≈ (S = 1, T = 0)

 fm ;   fm a1S0 ≃ − 20 a3S1 ≃ 5 1
−1/a + r

2 k2 + ⋯ − ik

Filled

2-body:

Approximate degenerate 
states of nuclei:

4He, 12C, 16O, etc. can be 
viewed as alpha clusters 



Wigner symmetry via Chiral EFT?
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that have been integrated out. The simplest are two contact
interactions,

Vc = 1
4π

1
(2π )3

(csPs + ctPt ), (3)

where we used the projectors onto spin-triplet and spin-singlet
states, Pt and Ps . The two strength parameters cs and ct need
to be determined from NN scattering data, for instance from
the scattering lengths in the 1S0 and 3S1 channels. It is possible
to write

cs = C0 + m2
πD2 + . . . , (4)

where the parameters C0 and D2 are independent of the quark
masses.

For the numerical solution of the LS equation, we need to
introduce a regulator f (p′, p) that effectively cuts momenta
at a cutoff ". The regularization procedure is an arbitrary
splitting of short-range physics into the high-momentum
region of loops and contact interactions. Low-energy physics
should, of course, be independent of the choice of regulator
(renormalization-group invariance), once the dependence of
contact parameters on the cutoff is taken into account, and
the cutoff is much larger than the momenta of interest. It is
convenient for the partial-wave decomposition to perform the
regularization using momentum cutoff functions depending on
p⃗ and p⃗ ′ rather than on q⃗. Here we use

f (p′, p) = e−(p4+p′4)/"4
. (5)

This leads to nonlocal interactions in configuration space.
However, because the regulator only depends on the magnitude
of the relative momenta, it does not influence the partial-wave
decomposition. This guarantees that contact interactions act
in specific partial waves, independent of ". In particular, it
implies that Vc only acts in the two S waves.

For the following discussion, it is useful to look also at the
configuration space expression for OPE,

V1π (r⃗ ) = m3
π

12π

(
gA

2fπ

)2

τ 1 · τ 2[T (r)S12 + Y (r)σ⃗1 · σ⃗2],

(6)
where

T (r) = e−mπ r

mπ r

[
1 + 3

mπ r
+ 3

(mπ r)2

]
,

(7)

Y (r) = e−mπ r

mπ r
,

TABLE I. Matrix elements of the operator τ 1 · τ 2 S12 for spin-
triplet channels with total angular momentum j. The matrix elements
depend on the isospin t and on the incoming and outgoing angular
momenta l and l′.

t s = 1 l = j − 1 l = j l = j + 1

t = 1 l′ = j − 1 −2 j−1
2j+1 0 6

√
j (j+1)
2j+1

l′ = j 0 2 0

l′ = j + 1 6
√

j (j+1)
2j+1 0 −2 j+2

2j+1

t = 0 l′ = j − 1 6 j−1
2j+1 0 −18

√
j (j+1)
2j+1

l′ = j 0 −6 0

l′ = j + 1 −18
√

j (j+1)
2j+1 0 6 j+2

2j+1

and the tensor operator is

S12 = 3(σ⃗1 · r̂)(σ⃗2 · r̂) − σ⃗1 · σ⃗2. (8)

The tensor force T (r) of OPE contains a singular interaction
∼1/r3 that acts in the spin-triplet waves; the tensor force is
zero in the spin-singlet channels. Using the partial-wave matrix
elements given in Table I one can identify whether the tensor
force is attractive or repulsive in specific partial waves. This
we will require in the following.

III. NUCLEON-NUCLEON PHASE SHIFTS

Our aim is to study the dependence of observables on
the chosen value for the cutoff ". We have performed a
partial-wave decomposition of the interaction described in the
previous section and then solved the LS equation and extracted
phase shifts. The explicit expressions are summarized in
Appendix A. We study the cutoff dependence of the phase
shifts in leading order (LO), or O(Q0), in Weinberg’s power
counting. We consider " in a wide range, between 2 and
20 fm−1.

We start with the S-wave channels, which were previously
examined in Refs. [41–44] with different regularizations. We
fit cs and ct to the 1S0 and 3S1 phase shifts at 10 MeV and
we confirm the cutoff independence found in Refs. [41,42], as
can been seen in Figs. 1 and 2. In Fig. 1 we show the running
of cs with the cutoff " and the resulting cutoff dependence of
the 1S0 phase shifts at various laboratory energies. In Fig. 2
we show the corresponding results for ct and the 3S1 and 3D1
phase shifts and the mixing angle ε1. One sees that the cutoff
dependence of the phase shifts is small for " >∼ 5 fm−1, but
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FIG. 1. Fit result for the counterterm cs as
a function of the cutoff, and the resulting cutoff
dependence of the 1S0 phase shifts at laboratory
energies of 10 MeV (solid line), 50 MeV (dashed
line), 100 MeV (dotted line), and 190 MeV
(dash-dotted line).
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that have been integrated out. The simplest are two contact
interactions,

Vc = 1
4π

1
(2π )3

(csPs + ctPt ), (3)

where we used the projectors onto spin-triplet and spin-singlet
states, Pt and Ps . The two strength parameters cs and ct need
to be determined from NN scattering data, for instance from
the scattering lengths in the 1S0 and 3S1 channels. It is possible
to write

cs = C0 + m2
πD2 + . . . , (4)

where the parameters C0 and D2 are independent of the quark
masses.

For the numerical solution of the LS equation, we need to
introduce a regulator f (p′, p) that effectively cuts momenta
at a cutoff ". The regularization procedure is an arbitrary
splitting of short-range physics into the high-momentum
region of loops and contact interactions. Low-energy physics
should, of course, be independent of the choice of regulator
(renormalization-group invariance), once the dependence of
contact parameters on the cutoff is taken into account, and
the cutoff is much larger than the momenta of interest. It is
convenient for the partial-wave decomposition to perform the
regularization using momentum cutoff functions depending on
p⃗ and p⃗ ′ rather than on q⃗. Here we use

f (p′, p) = e−(p4+p′4)/"4
. (5)

This leads to nonlocal interactions in configuration space.
However, because the regulator only depends on the magnitude
of the relative momenta, it does not influence the partial-wave
decomposition. This guarantees that contact interactions act
in specific partial waves, independent of ". In particular, it
implies that Vc only acts in the two S waves.

For the following discussion, it is useful to look also at the
configuration space expression for OPE,

V1π (r⃗ ) = m3
π

12π

(
gA

2fπ

)2

τ 1 · τ 2[T (r)S12 + Y (r)σ⃗1 · σ⃗2],

(6)
where

T (r) = e−mπ r

mπ r

[
1 + 3

mπ r
+ 3

(mπ r)2

]
,

(7)

Y (r) = e−mπ r

mπ r
,

TABLE I. Matrix elements of the operator τ 1 · τ 2 S12 for spin-
triplet channels with total angular momentum j. The matrix elements
depend on the isospin t and on the incoming and outgoing angular
momenta l and l′.

t s = 1 l = j − 1 l = j l = j + 1

t = 1 l′ = j − 1 −2 j−1
2j+1 0 6

√
j (j+1)
2j+1

l′ = j 0 2 0

l′ = j + 1 6
√

j (j+1)
2j+1 0 −2 j+2

2j+1

t = 0 l′ = j − 1 6 j−1
2j+1 0 −18

√
j (j+1)
2j+1

l′ = j 0 −6 0

l′ = j + 1 −18
√

j (j+1)
2j+1 0 6 j+2

2j+1

and the tensor operator is

S12 = 3(σ⃗1 · r̂)(σ⃗2 · r̂) − σ⃗1 · σ⃗2. (8)

The tensor force T (r) of OPE contains a singular interaction
∼1/r3 that acts in the spin-triplet waves; the tensor force is
zero in the spin-singlet channels. Using the partial-wave matrix
elements given in Table I one can identify whether the tensor
force is attractive or repulsive in specific partial waves. This
we will require in the following.

III. NUCLEON-NUCLEON PHASE SHIFTS

Our aim is to study the dependence of observables on
the chosen value for the cutoff ". We have performed a
partial-wave decomposition of the interaction described in the
previous section and then solved the LS equation and extracted
phase shifts. The explicit expressions are summarized in
Appendix A. We study the cutoff dependence of the phase
shifts in leading order (LO), or O(Q0), in Weinberg’s power
counting. We consider " in a wide range, between 2 and
20 fm−1.

We start with the S-wave channels, which were previously
examined in Refs. [41–44] with different regularizations. We
fit cs and ct to the 1S0 and 3S1 phase shifts at 10 MeV and
we confirm the cutoff independence found in Refs. [41,42], as
can been seen in Figs. 1 and 2. In Fig. 1 we show the running
of cs with the cutoff " and the resulting cutoff dependence of
the 1S0 phase shifts at various laboratory energies. In Fig. 2
we show the corresponding results for ct and the 3S1 and 3D1
phase shifts and the mixing angle ε1. One sees that the cutoff
dependence of the phase shifts is small for " >∼ 5 fm−1, but
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FIG. 1. Fit result for the counterterm cs as
a function of the cutoff, and the resulting cutoff
dependence of the 1S0 phase shifts at laboratory
energies of 10 MeV (solid line), 50 MeV (dashed
line), 100 MeV (dotted line), and 190 MeV
(dash-dotted line).
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Tensor F

 :r = m−1
π

• OPE tensor force breaks SU(4), badly

• But, SU(4) can implemented in pionless EFT by letting CT to be perturbation 
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Success of pionless-like interactions
• Microscopic explanation for recent pionless-like (short-ranged) structure 

calculations:

Lyu et al. ’18, Lattice EFT calaboration

Koenig et al. ’16 
Lyu BN et al. ’18 
Gattobigio et al. ‘19
…



Perturbative pions?
• Same LO as pionless:  

• LO of NN = bubble sums =  

• Subleading orders = distorted-wave expansion in OPE

Kaplan, Savage & Wise ’98 
Fleming, Mehen & Stewart ’99  
Beane, Kaplan & Vuorinen ’08

NLO: + …

N2LO: + …



Where KSW works
• OK for  MeV for  except 3P0 

• TPEs included in N3LO & N4LO 

k < Δ ≃ 290 l > 0
Wu & Long ’18 
Kaplan ‘19

Wu & Long ’18

NLO

N2LO N3LO

N4LO



KSW
Fleming, Mehen & Stewart ’99 

• Convergence not better than pionless, esp. for higher waves

PWA

NLO

N2LO

PWANLO

N2LO

N2LO + C4



KSW
Fleming, Mehen & Stewart ’99 

• Convergence not better than pionless, esp. for higher waves

NLO

N2LO
NLO

N2LO

PWA



Pushing pert-pion interactions

V r

Λ-1 VL ∝ −
1
r3

Vs

• Re-organizing higher contact terms

• From nonpert renormalization: Vs always repulsive (towards lower ) 

• Using Vs to moderate the OPE tensor force

Λ

 + Vπ C3P0p′ p
Nonpert ren of OPE

Vπ



PPI in 3P0

• Expansion in  +  (Born approximation)Vπ C3P0p′ p

• Higher-order contacts are identified when needed for renormalization at 
second, third-order Born approximation

Updated fit

Peng, Lyu & BwL ’20

 MeVΛ = 800

NLO

N2LO
N3LO



PPI: 3S1-3D1
Lyu, Zuo, Peng, Koenig & BwL

• Mixing angle vanishing at unitarity & chiral limits despite 
strong OPE tensor force

=ϵ1

 :mπ → 0



PPI: 3S1-3D1

• Not enough though 

• Only works for on-shell kinematics 

• N2LO 3D1, mixing angle are large

D DS

PWA

NLO

N2LO

NLO

N2LO



PPI: 3S1-3D1

• Expansion in (  + SD mixing contact)Vπ

D DS

Cancellation}



PPI: 3S1-3D1

Lyu, Zuo, Peng, Koenig & BwL

Preliminary

• PC of high-order contacts by counting divergence

NLO

N2LO

N3LO

 MeVΛ = 800



Summary
• A new perturbative-pion scheme with re-organized contacts 

• Simplify LO nuclear interactions to emphasize accidental 
symmetries like SU(4)-Wigner, unitarity limits, etc. 

• W/ larger validity range and 3NF at LO, implies 3NF important 
even for Q >    mπ


