Good LO Hunting —Chiral EFT for Nuclear Forces

Bingwei Long Sichuan University

In collaboration with Songlin Lyu, Lin Zuo, Rui Peng & Sebastian Koenig

Outline

- From chiral Lagrangian to nuclear forces
- Simplifying EFT nuclear forces:
 - Towards perturbative-pion interaction: Why and How?

粒子物理与核物理结合,大有可为

Multipole expansion A classical example of EFT

- Separation of scales: $R >> r_0$
- Controlled approximation, able to estimate uncertainty

$$V = \frac{q}{R} + \frac{d_i R_i}{R^3} + \frac{Q_{ij} R_i R_j}{R^5} + \cdots$$

- Naturalness $|d_i| \sim q r_0$ $|Q_{ij}| \sim q r_0^2$ \Rightarrow power counting based on naive dim. analysis (NDA)
- What if it is a rod?
 Slow convergence of a regular PC ⇒ possible fine-tuning ⇒ change PC

Hierarchy of EFTs

Momentum / Energy

Relay: from quarks & gluons to Uranium

QCD → Chiral Lagrangian

External sources: v, a, s, p_s

$$\mathcal{L}_{QCD} = \bar{q}_R i \gamma_\mu D^\mu q_R + \bar{q}_L i \gamma_\mu D^\mu q_L - \frac{1}{4} G^a_{\mu\nu} G^{a\,\mu\nu} + \bar{q} \gamma^\mu (v_\mu + \gamma_5 a_\mu) q - \bar{q} (s - i \gamma_5 p_s) q_+ + \dots$$

nonlinear realization

CCWZ; Weinberg; ...

Constraints by chiral symmetry

$$r_\mu=v_\mu+a_\mu=-eQA_\mu$$
 , $l_\mu=v_\mu-a_\mu=-eQA_\mu-rac{g}{\sqrt{2}}(W_\mu^\dagger T_++h.c)$, $s=\mathcal{M}\equiv\mathrm{diag}(m_q,m_q)$, $p_s=0$.

Wavy lines: axial currents

Potential diagrams

• One-pion exchange

Tensor F

 $T(r) = \frac{e^{-m_{\pi}r}}{m_{\pi}r} \left[1 + \frac{3}{m_{\pi}r} + \frac{3}{(m_{\pi}r)^2} \right]$

$$V_{1\pi}(\vec{r}) = \frac{m_{\pi}^{3}}{12\pi} \left(\frac{g_{A}}{2f_{\pi}}\right)^{2} \boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2} [T(r)S_{12} + Y(r)\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}]$$

$$S_{12} = 3(\vec{\sigma}_{1} \cdot \hat{r})(\vec{\sigma}_{2} \cdot \hat{r}) - \vec{\sigma}_{1} \cdot \vec{\sigma}_{2}$$

Tensor force dominant

$$r = m_{\pi}^{-1}: \frac{\langle {}^{3}S_{1}|\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2} \hat{S}_{12} T(1)|{}^{3}D_{1}\rangle}{\langle {}^{1}S_{0}|\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2} \vec{\sigma}_{1} \cdot \vec{\sigma}_{2} Y(1)|{}^{1}S_{0}\rangle} = 14\sqrt{2}, \qquad Y(r) = \frac{e^{-m_{\pi}r}}{m_{\pi}r}$$

• Many contact terms parametrizing NN short-range forces, e.g.,

$$V_{1S0} = c_0^{1S0} + c_2^{1S0}(p^2 + p'^2) + \cdots$$

$$V_{3P0} = c_0^{3P0} pp' + \cdots$$

Power counting for loops (HBChPT)

• Nucleon propagator — 1/Q or m_N/Q^2 $\frac{\imath}{p_0 - \frac{p^2}{2m}}$

$$\frac{i}{p_0 - \frac{p^2}{2m_N}}$$

• Pion propagator — $1/Q^2$ $\frac{i}{k_0^2 - \vec{k}^2 - m_\pi^2}$ $Q \sim m_\pi$

$$\frac{i}{k_0^2 - \vec{k}^2 - m_\pi^2}$$

$$Q \sim m_{\pi}$$

$$\int \frac{d^4l}{(2\pi)^4}$$

• Vertex with ν derivatives — $Q^{\nu} \qquad -\frac{g_A}{2f_{\pi}}N^{\dagger}\tau_a\vec{\sigma}\cdot\vec{\nabla}\pi_aN$

• A pion loop brings a suppression factor of $\left(\frac{Q}{4\pi f_{-}}\right)^{2}$

NN potentials from ChEFT

Contact forces doing heavy lifting

To promote, or not to promote?

Strength of OPE

Typical size of external momenta: $Q \sim m_{\pi}$

$$\frac{1}{f_\pi^2} \frac{Q^2}{m_\pi^2 + Q^2} \sim \frac{1}{f_\pi^2} \qquad \frac{1}{f_\pi^2} \sim \frac{1}{f_\pi^2} \frac{m_N}{4\pi f_\pi} \frac{Q}{a_l f_\pi}$$
 NN reducible

- Focus on loop momenta ~ external momenta Q
- Pion line or photon line $\sim 1/Q^2$, nucleon line in irreducible diagrams $\sim 1/Q$
- Nucleon line in reducible diagrams $\sim m_N/Q^2$
 - ⇒ Explain why we solve the Schrodinger eqn
 - ⇒ Explain why nuclei bound
- Strength of OPE $\sim a_l f_{\pi}$ (numerical factor $a_l \sim 1$ for small $l, a_l \gg 1$ for large l by centrifugal suppression)

Power counting: short-range physics

- Strength of OPE $a_l f_{\pi}$ may have impact on contacts through renormalization
- Coexistence of $a_l f_{\pi}$ and M_{hi} makes NDA no longer reliable
- Operators gaining large anomalous dimension through nuclear dynamics → "irrelevant" operators become relevant

UV cutoff

• "NN Potential": two-nucleon irreducible diagrams

• Lippmann-Schwinger eqn (equivalent to Schrodinger eqn)

Lippmann-Schwinger equation

$$T$$
 = V + V

$$T(\vec{p}', \vec{p}) = V(\vec{p}', \vec{p}) + \int \frac{d^3l}{(2\pi)^3} V(\vec{p}', \vec{l}) \frac{T(\vec{l}, \vec{p})}{E - \vec{l}^2/m_N + i\epsilon}$$

- Nucleons only propagate "forward", so l_0 can be integrated out Otherwise, antifermion-fermion pairs make this a many-body problem
- p $<< m_N$, relativistic corrections added as perturbations
- $A = 3, 4 \dots$ nonrelativistic few-body diagrams similarly resummed
- Regularized by UV cutoffs, numerically solved

Renormalization group and power counting

• Power counting of subleading pot. = how (ir)relevant they are in Wilson's RG

$$rac{\Lambda}{T^{(
u)}(Q,\Lambda)}rac{dT^{(
u)}(Q,\Lambda)}{d\Lambda}=\mathcal{O}\left(rac{Q^{
u+1}}{M_{hi}^{
u}\Lambda}
ight)$$

• Program1: Explicitly solving RG equation \rightarrow PC of contacts

Birse et al. '99

Pavon Valderrama & Phillips '15

Program 2: Speculating a PC and testing it against cutoff indep

 → one possible solution of RGE, thus an acceptable PC

Renormalizing singular attraction

Beane et al '01 Pavon Valderrama & Ruiz Arriola '05, '07 Nogga et al '05 BwL & van Kolck '07

Renormalizing singular attraction

Nogga, Timmerman & van Kolck (2005)

Manifestation via cutoff dependence

Phase shifts vs. Λ :

Solid: Tlab = 10 MeV, dashed: 50 MeV

Solution: change power counting

$$C_{3P0}\vec{p}\cdot\vec{p}'\sim \frac{Q^2}{m_{hi}^2} \xrightarrow{\text{promote}} C_{3P0}\vec{p}\cdot\vec{p}'\sim \frac{Q^2}{m_{lo}^2}$$

Renormalizing singular attraction

$$C_{3P0}\vec{p}\cdot\vec{p}'\sim \frac{Q^2}{m_{hi}^2} \xrightarrow{\text{promote}} C_{3P0}\vec{p}\cdot\vec{p}'\sim \frac{Q^2}{m_{lo}^2}$$

Can we simplify these nuclear interactions?

A motivation: Wigner SU(4) symmetry

Approximate SU(4) invariance of nuclear forces

$$\begin{pmatrix} p \uparrow \\ p \downarrow \\ n \uparrow \\ n \downarrow \end{pmatrix}$$

 $\begin{bmatrix} p \downarrow \\ n \uparrow \end{bmatrix}$ SU(4) transformation

JANUARY 15, 1937

PHYSICAL REVIEW

VOLUME 51

On the Consequences of the Symmetry of the Nuclear Hamiltonian on the Spectroscopy of Nuclei

> E. WIGNER* Princeton University, Princeton, New Jersey (Received October 23, 1936)

Interactions between NN pairs : $(S = 0, T = 1) \approx (S = 1, T = 0)$

2-body:
$$a_{1S0} \simeq -20 \text{ fm}$$
; $a_{3S1} \simeq 5 \text{ fm}$

$$\frac{1}{-1/a + \frac{r}{2}k^2 + \dots - ik}$$

Approximate degenerate states of nuclei:

⁴He, ¹²C, ¹⁶O, etc. can be viewed as alpha clusters

Wigner symmetry via Chiral EFT?

• OPE tensor force breaks SU(4), badly

Tensor F

$$V_{1\pi}(\vec{r}) = \frac{m_{\pi}^{3}}{12\pi} \left(\frac{g_{A}}{2f_{\pi}}\right)^{2} \boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2} [T(r)S_{12} + Y(r)\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}]$$

$$S_{12} = 3(\vec{\sigma}_{1} \cdot \hat{r})(\vec{\sigma}_{2} \cdot \hat{r}) - \vec{\sigma}_{1} \cdot \vec{\sigma}_{2}$$

$$r = m_{\pi}^{-1}: \frac{\langle {}^{3}S_{1}|\boldsymbol{\tau}_{1}\cdot\boldsymbol{\tau}_{2}\hat{S}_{12}T(1)|{}^{3}D_{1}\rangle}{\langle {}^{1}S_{0}|\boldsymbol{\tau}_{1}\cdot\boldsymbol{\tau}_{2}\vec{\sigma}_{1}\cdot\vec{\sigma}_{2}Y(1)|{}^{1}S_{0}\rangle} = 14\sqrt{2}$$

• But, SU(4) can implemented in pionless EFT by letting C_T to be perturbation

$$\times$$

$$-\frac{1}{2}C_{S}(N^{\dagger}N)^{2} - \frac{1}{2}C_{T}(N^{\dagger}\vec{\sigma}N)^{2} - h_{0}(N^{\dagger}N)^{3}$$

Success of pionless-like interactions

• Microscopic explanation for recent pionless-like (short-ranged) structure

calculations: Koenig et al. '16 Lyu BN et al. '18

Gattobigio et al. '19

Lyu et al. '18, Lattice EFT calaboration

Perturbative pions?

• Same LO as pionless:

Kaplan, Savage & Wise '98 Fleming, Mehen & Stewart '99 Beane, Kaplan & Vuorinen '08

- LO of NN = bubble sums = \searrow
- Subleading orders = distorted-wave expansion in OPE

Where KSW works

- OK for $k < \Delta \simeq 290$ MeV for l > 0 except 3P0 Kaplan '19
- TPEs included in N3LO & N4LO

Wu & Long '18

KSW

• Convergence not better than pionless, esp. for higher waves

KSW

• Convergence not better than pionless, esp. for higher waves

Pushing pert-pion interactions

Re-organizing higher contact terms

Nonpert ren of OPE

- From nonpert renormalization: V_s always repulsive (towards lower Λ)
- Using V_s to moderate the OPE tensor force

PPI in 3P0

Peng, Lyu & BwL '20

• Expansion in $V_{\pi} + C_{3P0}p'p$ (Born approximation)

$$V^{(1)}(^{3}P_{0}) = V_{\pi} + C_{2}^{^{3}P_{0}}p'p$$

• Higher-order contacts are identified when needed for renormalization at second, third-order Born approximation

Updated fit $\Lambda = 800 \text{ MeV}$

	LO NLO	N^2LO	N^3LO
π	OPE		TPE0
$rac{}{}^{3}P_{0}$	C_2	C_4	C_6

Lyu, Zuo, Peng, Koenig & BwL

• Mixing angle vanishing at unitarity & chiral limits despite strong OPE tensor force

$$\begin{split} \epsilon_1 &= \frac{m_N k}{4\pi} \frac{k}{(a_t^{-2} + k^2)^{\frac{1}{2}}} \\ &\times \left[\frac{1}{a_t k} \langle k, {}^3S_1 | V_\pi | k, {}^3D_1 \rangle - \frac{g_A^2}{\sqrt{2} f_\pi^2} \Pi(0, \frac{m_\pi}{k}) \right] \\ &\Pi(kr, \frac{m_\pi}{k}) \equiv m_\pi^3 \int_r^\infty dr' r'^2 n_0(kr') T(m_\pi r') j_2(kr') \\ &m_\pi \to 0 : \int_0^\infty dr r^2 n_0(kr) \frac{1}{r^3} j_2(kr) = 0 \end{split}$$

- Not enough though
- Only works for on-shell kinematics
- N2LO 3D1, mixing angle are large

• Expansion in $(V_{\pi} + SD \text{ mixing contact})$

$$V^{(1)}({}^{3}S_{1} - {}^{3}D_{1}) = V_{\pi}$$

$$+ \begin{pmatrix} C_{0}^{(1)} + C_{2}^{{}^{3}S_{1}}(p'^{2} + p^{2}) & -C_{2}^{SD}p^{2} \\ -C_{2}^{SD}p'^{2} & 0 \end{pmatrix}$$

• PC of high-order contacts by counting divergence

	LO	NLO	N^2LO	N^3LO
π		OPE		TPE0
$^{3}S_{1}$ $^{1}S_{0}$	C_0	C_2	C_4	C_6
SD		C_2	C_4	C_6
$^{-3}\!D_1$				C_4

Lyu, Zuo, Peng, Koenig & BwL

Summary

- A new perturbative-pion scheme with re-organized contacts
- Simplify LO nuclear interactions to emphasize accidental symmetries like SU(4)-Wigner, unitarity limits, etc.
- W/ larger validity range and 3NF at LO, implies 3NF important even for $Q > m_{\pi}$