

Track and Vertex Reconstruction for Dark Photon Search at DarkSHINE

Zejia Lu, Huayang wang, Yifan Zhu, Yulei Zhang, Liang Li

Shanghai Jiao Tong University

July 22nd , 2025

□ Introduction

Tracking

- Traditional method
- GNN method

Vertexing

- Vertexing method
- Application on dark photon search

Summary

DarkSHINE Experiment

- OarkSHINE is a proposed fixed-target experiment that utilizing electron beam from SHINE aimed at searching the light dark matter.
- The DarkSHINE detector system is consisted of tagging tracker, recoil tracker, ECAL and HCAL.

Dark Photon Search

Two model parameters:

- Coupling constant *e* • Light dark matter search: dark photon
 - Dark photon mass $m_{A'}$

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{2} \frac{\epsilon}{\cos \theta_W} F^{Y,\mu\nu} F^{\prime}_{\mu\nu} + \frac{1}{4} F^{\prime,\mu\nu} F^{\prime}_{\mu\nu} + m^2_{A'} {A'}^2$$

According to the decay channel of dark photon, we have invisible and visible decay.

Bump hunting : High production rate

Challenging region :

- Signal rate too low for bump hunting
- Lifetime too short for beam-dump experiment
- -> Displaced vertex reconstruction needed!

We will focus on **visible decay**

Signal and Background

• To differentiate signal from background, the key is to reconstruct the displaced vertex through tracking and vertexing.

Tracking and Vertexing

- We apply <u>full chain reconstruction</u> from hits to tracks and to vertexes. We adopt Kalman Filter algorithm for both tracking (GenFit) and vertexing (Rave).
- The simulation is based on **Geant4. CalcHEP** generator is used for signal production.

2nd Workshop on Tracking in Particle Physics Experiment

• Cluster strip hits on single layer.

- Use mean shift clustering, based on the weighted distance (energy deposition of hits) to the center of cluster.
- (x2, y2) (x1, y1)

$$\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} x_1 \cos \theta_1 - y_1 \sin \theta_1 \\ x_2 \cos \theta_2 - y_2 \sin \theta_2 \end{pmatrix}$$
$$A = \begin{pmatrix} \cos \theta_1 & -\sin \theta_1 \\ \cos \theta_2 & -\sin \theta_2 \end{pmatrix}$$
$$\begin{pmatrix} x \\ y \end{pmatrix} = A^{-1} \begin{pmatrix} u \\ v \end{pmatrix}$$
$$\begin{pmatrix} \sigma_x^2 & \sigma_{xy} \\ \sigma_{xy} & \sigma_y^2 \end{pmatrix} = A^{-1} \begin{pmatrix} \sigma_u^2 & \sigma_{uv} \\ \sigma_{uv} & \sigma_v^2 \end{pmatrix} (A^{-1})^T$$

- Use transformation of coordinates, can handle any cases.
- With error propagation.

Merge u, v layer

Hit Reconstruction

Strip clustering

2nd Workshop on Tracking in Particle Physics Experiment

Track Finding and Fitting

Track finding

- Greedy algorithm + circle fit (Kasa method).
- Good tracking efficiency for single-track
 - 97% in single-track case
 - 70% in 3-track case, improvement needed

Track fitting

- Kalman filter algorithm based on GenFit.
- Track momentum resolution
 - 3% at tagging tracker
 - 6% at recoil tracker.

GNN Tracking: Build the Network

- We connect hits from adjacent tracker module to form a graph for each event.
- The task of GNN is to predict the truth edge that connects hits from the same track.

LinkNet (classification):

 To predict if an edge is a true particle trajectory passing through the two connected node

GNN Tracking: Training

Loss function

- Binary cross-entropy with logit
- $L = \sum_{i} \left[-\hat{y}_i \log(\sigma(y_i)) (1 \hat{y}_i) \log(1 \sigma(y_i)) \right]$

Optimization

• Adam algorithm

Dataset

- 10⁵ dark photon visible decay events
- train: validation: test = 3: 1: 1

GNN Tracking: Result

The output of GNN is the score of each edge. We use the Dijkstra algorithm to cluster the edges into track.

The **3-track** reconstruction efficiency comparison

$m_{A'}$ [MeV]	20	50	100	200	500
Greedy + circle fit	60%	75%	77%	75%	69%
GNN + Dijkstra	82%	85%	85%	85%	84%

Use GenFit track as input (in the preliminary study, we use truth track finding result). Several vertexing methods (in Rave):

- Kalman filter
- Adaptive Vertex Fitter

Implemented based on rave (<u>https://rave.hepforge.org/</u>)

Vertexing

We select several vertexing parameters to improve the vertex resolution:

- The vertex z resolution is highly dependent on the angle, the momentum of tracks (multiple scattering effect).
- We add cut on these variables to improve the vertex z resolution.

2nd Workshop on Tracking in Particle Physics Experiment

Vertexing Application: Visible Decay Search

We study the vertex resolution on the main background of visible decay.

Cut summary				
Kinomatics out	Track p > 0.5 GeV			
Kinematics cut	Invariant mass > 20 MeV			
Poconstruction track cut	Shared hit num = 0			
Reconstruction track cut	Impact parameter cut			
	Recon vertex num >= 1			
	Vertex dispersion < 0.4 mm			
Vertex parameter cut	Vertex theta > 0.012 rad			
	Vertex projection – IP distance < 0.3 mm			

Vertexing result of $e^-N \rightarrow e^-Ne^+e^-$ process:

EOT: 3E14

Event type	eBrem + conv	ePairProd	
Event num	7.5E12	4.3E11	
Event num (after cut)	2.2E10	1.2E9	
0.1 background range	> 6.8 sigma (65mm, 99mm)		

Exclusion Limit

- Solution From the vertex reconstruction result of $e^-N \rightarrow e^-Ne^+e^-$ process, assuming the reconstructed vertex is Gaussian distribution, we define the displaced vertex region at (65, 99) mm from the target.
- The exclusion limit for DarkSHINE (1 year run, 3E14 EOT) is estimated.

Exclusion Limit

If the vertex resolution can be improved by a factor of 2 (4.3mm), the signal region can be further extended.

Summary

We have developed the full tracking and vertexing framework at DarkSHINE.

Tracking

- A simple track finding algorithm (Greedy find + circle fit) is implemented with good tracking efficiency (~97%) in single track case.
- Track fitting algorithm with Kalman Filter based on GenFit is implemented.
- GNN track finding is developed to improved tracking efficiency in 3-track case (from ~70% to ~85%).

Vertexing

- Vertex reconstruction based on GenFit and Rave has been developed with mm-level resolution on vertex Z.
- DarkSHINE can reach state-of-art sensitivity for dark photon visible decay search using improved vertex reconstruction.
 - *m*_{A'} (30 MeV, 60 MeV)
 - *ϵ* (4e-5, 2e-4)

