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Annual CPU Consumption [MHSO06years]

Reconstruction at LHC & HL-LHC
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» At the HL-LHC, CPU time increases exponentially with

more pileup, leading to increase in annual computing cost by
a factor of 10-20. -mm HL-LHC

150-200
Tracks ~280 ~600 ~7-10k

» Tracking & jet clustering are CPU-consuming tasks.

GPU & ML-based approaches are actively investigated, but
quantum algorithms may also bring in innovations.
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Quantum Applications in HEP
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About quantum simulation, see also:
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lterative or Global Reconstruction?

» Both track & jet reconstruction algorithms can be categorized into iterative
& global approaches.

* [terative:
» Tracking: combined Kalman filter, etc.
« Jet clustering: all(?) traditional jet algorithms (anti-k,, Cambridge-Aachen, ee-k,, etc.)

 Global:

» Tracking: Hough transform, GNN, etc.
 Jet clustering: ML-based algorithms (though not used in actual experiments so far)

 In guantum algorithms, alobal reconstruction can be formulated as
combinatorial optimization problems.
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Combinatorial Optimization Problems

Combinatorial 2 _ ]
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Practically complicated problems can often be formulated as combinatorial optimization
problems/Ising problems = Ground state of Ising Hamiltonian corresponds to the answer.

Non-deterministic Polynomial time

They are generally NP-complete problem: no efficient algorithm exists to find the solution.
- But quantum approaches can provide quasi-optimal answers!
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Quantum Hardware Solvers

Quantum annealing Quantum Gates + Classical Hybrid
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* Quantum annealer looks for the global = (0 ) B = (BB ) e Fp(7 )

minimum based on the quantum adiabatic

theorem and also uses quantum tunneling. * Quantum gate machines can also solve Ising

problems with variational circuits:

* Higher number of qubits available than « e.g. Variational Quantum Eigensolver (VQE), Quantum
quantum gates (4000+ qubits for D-Wave Approximate Optimization Algorithm (QAOA),
Advantage2) maginary Hamionian varatonal ansats (Ve

« Connectivity among qubits is currently limited ) etc.

(6-ways for 2000Q & 20-ways for D-Wave - Search for the ground state by scanning the
Advantage?2). variational parameters with classical optimizers.
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Quantum-Inspired Solvers

“Quantum-inspired” algorithms search for ground state through the classical time
evolution of differential equations.

Simulated annealing Simulated bifurcation

-
E Convergence of simulated annealing
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Simulated annealing (SA) uses random moves in

the solution space. « Simulated bifurcation (SB) emulates quantum

In each random displacement, if lower energy AE < 0 is adiabatic evolution of Kerr-nonlinear parametric
obtained, it is automatically accepted. oscillators, exhibiting bifurcation phenomena.

If AE > 0, it is accepted probabilistically according to the * Several variants exist depending on the continuous

Boltzmann factor: P (AE ) = exp(-AE /k T ). treatment of the spins (x;): e.g. aSB, bSB, dSB
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Track Reconstruction
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Tracking as Optimization Problem

* Tracking as an optimization problem: a global approach to reconstruct tracks in one-go.

(—iterative approach: Combined Kalman Filter)

« Stimple-Abele & Garrido (1990): generate all potential doublets with some cuts applied &
pursue a binary classification task (i.e. solve an Ising/QUBO problem) to determine which

ones should be kept.

 Modern quantum computing versions: quantum annealers w/ doublets (A. Zlokapa et al.) &
triplet-based (F. Bapst et al.) approaches; quantum gate machines (L. Funcke et al., etc.)

A

186 particles in a phi slice of 11/3
precision (%): 98.5, recall (%): 98.4,
trackml score (%): 98.35

59,077 = 752 doublets

QUBO size
68,043

—-400 —-200 0 200 400
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Track Finding as Ising/QUBO Problem

Doublets/triplets are connected to reconstruct tracks & it can be regarded as
a guadratic unconstrained binary optimization (QUBO)/Ising problem.
* In our study, we adopted a triplet-based QUBO formulation.

N N N
O(a; b ’ D — Z ai Tf + Z Z b UTI 7:? -0 — Q% ignored o conflicts non-ehausive
i=1 $ O a0 Q__ tj'*\\ (o Inuuiuintult :_"T\\ £ e}

i j<i L .
e @ Sl 10\\\ \\Ql-__-:__-.--——-....;) y
Quality of Compatlblllty no shared hits ™o X a.® B
triplets b/w triplet pairs &0 . Quadruplets T
\dp | 120 o ‘ ““x._\__w_____ ______ 0 L
a; :a(l—efro_) —b—ﬁ(l—eJA_) : o T bjj-C (> 0)
b; = O (if no shared hit), 1 (if conflict) - by--5j (< 0)
= -S; (if two hits are shared) e . . . .
’ Minimizing QUBO is equivalent to searchin
o _ L= 3(8(a/pria/pry)| + max(50:,50,) J : Searching
= (1+H, + H,)? = for the ground state of the Hamiltonian.
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Track Finding Workflow w/ QUBO

doublets , _. |
- : filter doublets : f kept triplets
o % \ ~
O : create triplets jauso/ | | precision
; | Ising : doublets <
: z ; : recall
: create gplets I solver 1 l |
tracks
: build QUBO — e.g. QAOA, _\—' trackml score

quantum annealing,
-~ quantum-inspired ...

final doublets

forming track candidates

preprocessing / model building sampling processing scoring

« We build QUBO on an event-by-event basis from the silicon detector hits.
* Predicted ground state will define which triplets should be kept (binary=1).
Connecting the adopted triplets will give us the tracks.



Dataset (TrackML)

« TrackML is an open-source dataset
prepared for TrackML Challenges (two
competitions hosted by CERN &
Kaggle).

* |Itis designed w/ HL-LHC conditions
(200 pileup) & run w/ fast simulation
(e.g. noise, inefficiency, parametrized
material effects, etc.)

* Only tracks w/ pr>1 GeV in the barrel
are considered.

« QUBO is computed event by event
using hepgpr-qgallse framework.

Thanks to Andreas Salzburger for
suggestions and discussions!
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Quantum Hardware Approaches

» # of triplet candidates determines # of qubits
required > HL-LHC conditions (O(0.1M)
qubits) do not fit into the current scale of
guantum annealing & gate computers

 QUBO is split into sub-QUBOs. There is no
visible degradation in Ising solving precision,
but the computation speed degrades by a
few orders of magnitude.

1st usage of theoretically robust sub-QUBO algorithm in HEP
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Quantum-Inspired Approach (SB)

Pumping amplitude (annealing schedule): a(t) = 0.0 (b) x10* K2000

Graph size Algorithm Hardware Time(s)
0 TTN CPU 1 core 5.62
Brute-force search*® GPU Titan V >10%®
) 4x4x8 Exact belief CPU 1 core ~0.96
=2 propagation'®
| QA® D-Wave ~0.05 |
| bSB CPU 1 core 0.12 |
—4 | bSB GPU TeslaV100  <0.001 |
TTN CPU 1 core 32400
TTN* GPU Tesla V100 84
—~fg 8x8x8 Brute-force search* GPU Titan V >10"%
Exact belief CPU 1 core ~2880
102 10! 1 propagation'®
Annealing Time (s) dSB CPU 1 core 17.64
dsB GPU Tesla V100 <0.68

CZZNMFA | SimCIM l1aSB  1bSB EEEEJSB

SO CAC ©56ICFC  mEEISFC  EESA Q.G. Zeng et al., Comm. Phys. (2024) 7:249

+ SB is a powerful quantum-inspired algorithm & can directly handle up to ~1M-qubit-level problems.

« It can run in parallel unlike simulated annealing. It also benefits from cutting-edge resources such as GPUs
and FPGAs.

* It is known to outperform other classical algorithms as well as quantum annealing (QA) for some
existing problems: both in terms of minimum energy prediction & computing speed.
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Efficiency (Recall) [%]

Quantum-Inspired Tracking

Efficiency Purity Ising Energy vs computing time
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Quantum-annealing-inspired algorithm can DIRECTLY handle the HL-LHC dataset.

SB provides compatible or slightly better efficiency & purity than D-Wave Neal.

bSB provides 4 orders of magnitude speed-up (23min 2 0.14s) from D-Wave Neal for HL-
LHC data (cf. D-Wave hardware w/ gbsolv is ~2 orders of magnitude slower than Neal).

SB can effectively run w/ multiple processing, GPU & FPGA - Perfect match with HEP!!
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Jet Reconstruction




Traditional Approach
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Done!

» Repeatedly recombine closest pair of objects (tracks, calorimeter clusters or particle flows etc.):

« Terminate by a user-defined distance R [inclusive clustering]

« Terminate by a user-defined jet multiplicity [exclusive clustering]

e.g. Distance adopted in Cambridge-
Aachen jet algorithm

 Users also define the distance; i.e. how they call objects as “close” 2> AR§ = Ay,gz' + Aéﬁ-

Hideki Okawa
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Jet Reconstruction as Ising Problem

Quantum Annealing (Thrust or Angle-based)

A. Delgado, J. Thaler,
PRD 106, 094016 (2022)
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Angle-based

D. Pires, Y. Omar,
J. Seixas, PLB
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Quantum Gates (e.g. QAOA)
30-particle data (e*e>ZH->vvss) 6-particle data (e*te->ZH->vvss)
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 Jet reconstruction can also be considered as a QUBO
problem. (There are also iterative quantum approaches; backup)

* Quantum annealing: Angle-based method has better
performance than the Thrust-based, but does not
work for multijet (Nje_f>2) events so far.

* QAOA: Used small-size dataset & evaluated average

angle.
18
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Multijet QUBO Formulation (Our Study)

ete~™ -» ZH - qggbb
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« Exclusive jet finding (i.e. fixed number of jets) with the ee-k; algorithm is the baseline
at CEPC & other e+e- future Higgs factories.

 We adopt the same distance in the QUBO formulation. QUBO is designed for
general jet multiplicity beyond 2 jets. x(M=1 means i-th constituent belongs to n-th jet.

« Performance is also compared with the angle-based method from a previous study.
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Dataset

* Three sets of e+e- collision events are generated
to consider various jet multiplicity:

« Z>qq (Vs=91 GeV, 2 jets),
« ZH->qqbb (Vs=240 GeV, 4 jets)
. tt >bbqqqq (Vs=360 GeV, 6 jets)
* Delphes card with the CEPC 4t'-detector
concept is used for the fast simulation.

 Jets are reconstructed from the particle flow
candidates.




Event Displays (tt)

Quantum-Inspired

Missing some jets +

and/or PFlows are totally mixed up.
2nd Workshop on Tracking in Particle Physics Experiments
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Impact on Invariant Mass

ete” » Z - qq 400 ete~ -» ZH - qgbb ete~ - tt » bbqdqq
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* The clustering w/ bSB is slightly different from FastJet (see backup for
quantitative comparison), but it’s OK. - Let’'s check the inv. mass resolutions.

» Other quantum-inspired algorithms (dSB & Neal) already has ~20% degradation in
Z mass resolution & unable to properly reconstruct jets in multijet events (thus not

shown for ZH & tt)
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Comparison w/ Quantum Hardware

« Performance was compared with QAOA Performance

two simplified jet datasets (12 qubits)
to quantum annealing and QAOA
using simulator.

* QuantumAnnealing.jl package is

used to evaluate D-Wave 2000Q

performance (6-way connectivity). ' LB SR VB
Time-to-solution for D-Wave 2000Q estimated by simu-
lation, bSB, dSB, and QAOA on a quantum circuit simu-
lator for two simplified Z — ¢g events.
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* Even for such small datasets, bSB
exceeds the speed of guantum

annealing by about two orders of

magnitude & even more for QAOA Event ~ D-Wave [s] | bSB [s]| dSB[s]  QAOA [s]
(w/ a caveat that QAOA should run 0 21.29 0.35 0.79 1.07 x 103
faster on real quantum hardware). 1 20.52 0.36 0.89 3.36x 10°
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Further Improvement
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XZ Tao, QG Zeng, ZJ Huang, BW Zuo, J Zhuang,
H Okawa, MH Yung, in preparation

Further Improvement in Quantum-inspired

— Original
Minimum

Energy

. Original
\, ——- Penalty
Minimum ]

!
!
!

—— Original+Penalty
Minimum

* We have developed a new variant
of SB: Tabu-enhanced simulated
bifurcation.

* Penalty is applied to local minima
extracted from the warming-up
phase.

Hideki Okawa

Tabu-Enhanced Simulated Bifurcation

(Input:

Ising Problems

\

SB algorithms
(or other algorithms)

Warming up phase
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Solutions as
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Output:
Final solutions

SB algorithms with tabu terms

Checking phase
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Y Y

a of total iterations
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Further Improvement in Quantum-inspired

Max-cut values from G22 instance

 Much improved values obtained P et S 13350 —- e -y -——-3
for G-set Max-Cut benchmark 133004 r 0] & fo
dataset. % 132501 ;3; 13250
. . . 4:2: 132001 ; 132000 |
 Visible improvement in S ol ~—bs5 O ——ds8
i ) i i TEbSB (mini-batch) 13150 ‘ —#— TEdSB (mini-batch)
minimum energy pred|Ct|0n & 131001 e gi:fsn(;wlr;batch) _— ::':f ___ EESfEn(suwll;batCh)
Computing time for TrackML 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Total iterations Total iterations

datasets. . -
Minimum energy predictions from TrackML datasets

bSB TEbSB dSB TEdSB
Time Emergy Time Energy Time Energy Time Energy

(s) (a.u.) (s) (a.u.) (s) (a.u.) (s) (a.u.)
ev1004 (N=109498) 8.67 -448998 7.25 -449363 9.02 -447488 7.43 -449349
ev1014 (N=78812) 5.06 -263353 4.27 -263650 5.24 -261860 4.33 -263641
ev1023 (N=80113) 5.33 -261244 4.42 -261345 5.48 -260928 4.80 -261362
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Reconstruction can be formulated as QUBO/Ising problems.

Quantum-inspired algorithms (bSB in particular) significantly outperforms QAOA &
quantum annealing for QUBO tracking & jet clustering.

Tracking:
» This the world’s first application of simulated bifurcation to high energy physics.

« bSB can directly handle the HL-LHC datasets and provides four orders of magnitude speed-
up with 1 GPU from D-Wave Neal & can be considered for implementation NOW.

Jet reconstruction:
* This is the world’s first successful demonstration of multijet reconstruction w/ QUBO.
» At present, only bSB can predict reasonable Ising energy for multijet reconstruction QUBOs.
 bSB provides improved jet energy resolution for multijet events.

We have also succeeded in improving the SB quantum-inspired algorithms further.
Applications to specific high-energy physics problems are under way.
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Reconstructed w/ bSB
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