

Cosmic Track Reconstruction of BESIII MDC

Yaxuan Li¹, Linghui Wu², Mingyi Dong², Minggang Zhao¹

1. Nankai University

2. the Institute of High Energy Physics, CAS

Workshop of Track Reconstruction in Particle Physics Experiments 2025.7.21~23 · Huizhou

Outline

- Introduction
- Principle of Legendre Transform & Hough Transform
- 2D Track finder Using Legendre Transform in magnetic field
- Track Reconstruction in magnetic field
- 2D Track finder Using Hough Transform without magnetic field
- Track Reconstruction without magnetic field
- Algorithm Applications & Performances
- Summary

MDC: the Central Tracker on BESIII

BESIII: Beijing Spectrometer III experiment

- located at the BEPCII (Beijing Electron–Positron Collider II) in Beijing, China.
- focus on precision measurements in the *τ*-charm energy region (hadron spectroscopy, charmonium states, light hadrons, new physics etc.)
- Luminosity : $1 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$ @ 3.773 GeV

MDC: the Central Tracker on BESIII

MDC: Main Drift Chamber

- The central tracking detector of the BESIII experiment
- Spatial resolution ~130 μm Momentum resolution ~0.5% @ 1 GeV/c dE/dx information for particle identification
- Inner chamber : layer 1~8 (stereo wires)

Outer chamber : layer 9~20 (axial wires), layer 21~36 (stereo wires), layer 37~43 (axial wires)

Inner Tracker Replacement in BESIII Upgrade

Aging of the inner chamber of MDC (iMDC)

- due to the high luminosities $(1 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1} @ 3.773 \text{ GeV}) \& \text{long-term operation}(2009 \sim 2024)$
- will affect the detector performances significantly

Replace the iMDC with 3 layers CGEM (Cylindrical Gas Electron Multiplier)

- 2024-09-14, iMDC pulled out •
- 2024-10-05, CGEM installed ٠
- 2025-02~03, MDC cosmic-ray test with & without magnetic field •

2025-03~06, MDC+CGEM combining cosmic-ray test with & without magnetic field •

Reconstruction Algorithm for Cosmic-Ray Test

To evaluate the MDC performance and optimize the operation parameters, the cosmic reconstruction algorithm is developed.

The algorithm

using Hough/Legendre Transform to find track and using Least Squares Method to fit track.

Legendre Transform

Convex function: $f(x): R \to R$, $\frac{d^2 f}{dx^2} > 0 \to F(p) = \sup_{x} [px - f(x)]$ Concave function: $f(x): R \to R$, $\frac{d^2 f}{dx^2} < 0 \to F(p) = \sup_{x} [f(x) - px]$ $(x_0, f(x_0)) \to (p_0, F(p_0))$ in Legendre space

 p_0 : the slope of the tangent line at $(x_0, f(x_0))$

 $\pm F(p_0)$: the intercept of the tangent line at $(x_0, f(x_0))$

Cite from: Alexopoulos, T. Implementation of the Legendre transform for track segment reconstruction in drift tube chambers. NIMA, (2008). 7

Legendre Transform

Convex function: $f(x): R \to R$, $\frac{d^2 f}{dx^2} > 0 \to F(p) = \sup_{x} [px - f(x)]$ Concave function: $f(x): R \to R$, $\frac{d^2 f}{dx^2} < 0 \to F(p) = \sup_x [f(x) - px]$ $(x_0, f(x_0)) \to (p_0, F(p_0))$ in Legendre space : the slope of the tangent line at $(x_0, f(x_0))$ p_0 $\pm F(p_0)$: the intercept of the tangent line at $(x_0, f(x_0))$ (x) \rightarrow a curve F(p) in Legendre space $\begin{cases}
p = \frac{df}{dx} \\
F(p) = px - f(x) \text{ for convex function} \\
F(p) = f(x) - px \text{ for concave function}
\end{cases}$ a curve f(x)a point $(x_0, f(x_0))$ $f(x_0) = kx_0 + b$ $\begin{cases}
p = \frac{df}{dx} = k \\
F(p) = f(x) - px = b
\end{cases}$ Hough Transform a point $(x_0, f(x_0)) \rightarrow a$ line $F(p) = f(x_0) - x_0 p$ in Legendre (Hough) space 8

a circle:
$$(x_0, y_0), R$$

$$\begin{cases} y_1 = y_0 + \sqrt{R^2 - (x - x_0)^2} \\ y_2 = y_0 - \sqrt{R^2 - (x - x_0)^2} \end{cases} \xrightarrow{(L)} (L) \begin{cases} r_1 = x_0 \cos \theta + y_0 \sin \theta + R, \text{ concave part} \\ r_2 = x_0 \cos \theta + y_0 \sin \theta - R, \text{ convex part} \end{cases} \xrightarrow{(r_1 = r_0 \cos(\theta - \phi) + R) \\ r_2 = r_0 \cos(\theta - \phi) - R \end{cases}$$

$$\begin{cases} r_1 + r_2 = 2r_0 \cos(\theta - \phi) \\ r_1 - r_2 = 2R \end{cases}$$

$$\begin{cases} r_1 + r_2 = 2r_0 \cos(\theta - \phi) \\ r_1 - r_2 = 2R \end{cases}$$
one circle \rightarrow one sine curve $+$ one value whose parameter corresponds to (x_0, y_0)

Legendre space

r[mm]

4000

3000

2000

1000

-1000

-2000

-3000

-4000

-5000

a series of circles \rightarrow

each triplet of the axial wire hits defines a circle

a series of sine curves

0

the brightest band corresponds to (x_0, y_0) of 2D trajectory

to determine (x_0, y_0)

R

Counts

200

150

100

50

hR

10660

3169

2830

Entries

Std Dev

Mean

the peak corresponds to *R* of 2D trajectory

to determine R

Optimizations of the 2D Track Finder

- The Cosmic-ray events are selected with barrel EMC shower back-to-back
- A rough analysis shows that the momentum of cosmic-ray tracks is more than 1 GeV/c \rightarrow R > 3 m.
- The radius of MDC is around 0.8 m

 $\rightarrow r_0 >> 0.8$ m.

- Fake band and peak in Legendre space comes from:
 - triplets with closely spaced hits
 - triplets with noise hits

Optimizations of the 2D Track Finder

Cause 1: When two points in a triplet are close to each other, the circle tends to have a smaller radius, since the wire position, rather than the drift circle, is taken as the hit position)

Optimization:

chose points from different parts as a triplet to use

Optimizations of the 2D Track Finder

Cause 2: interfering hits from noise or secondary particles

Optimization:

- exclude hits from layers with nhits>3
 (secondary particles with low momentum)
- 2. exclude circles defined by triplets with unreasonable (x_0, y_0) or R value
- remove hits far from the track and fit the circle with the remaining ones

exclude hits from layers with nhits>3

Track Reconstruction in Magnetic Filed

2D Track Finder with Hough Transform

one hit \rightarrow one line on Hough plane

a series of hits

→ a series of lines on Hough plane
 the intersection point of lines corresponds
 to the line parameter of 2D track

2D Track Finder with Hough Transform

Track Reconstruction without Magnetic Filed

Algorithm extension to integrate CGEM-IT

- For alignment use, Extend the functionality to support fitting as one track
- For CGEM data analysis, Extend the functionality to associate CGEM clusters and perform joint track fitting.
 - CGEM: 2D Readout using X and V strips
 - CGEM: clusters (formed by combining adjacent fired strips on both X and V views) serve as "hits" in track reconstruction.

combining fit

Algorithm Application & Performance

• Efficiency>90%(based on real data)[not the key performance concern]

MDC reconstruction	in mag	without mag	MDC + CGEM joint reconstruction	in mag	without mag
All cosmic ray events selected	9782	8648	cosmic ray events with CGEM clusters	8356	7836
events with successful track reconstruction	8944	8087	events with successful track reconstruction	8159	7616
Ratio(success/all)	91.4%	93.5%	Ratio(success/all)	97.6%	97.2%

• Works well in MDC performance evaluation

• Works well in CGEM alignment [details in Jiajv Wang's report]

Summary

• To analyze cosmic-ray data in the BESIII upgrade, a new track reconstruction algorithm has been developed, for scenarios :

without the MDC inner chamber

with newly installed CGEM-IT

- The algorithm
 - performs track finding using:

the Hough Transform (for cases without a magnetic field)

the Legendre Transform (for cases with a magnetic field)

- fit tracks with the Least Squares Method
- The algorithm works well in both MDC and CGEM data analysis.

THANKS!

BACK UP

Legendre Transform

a circle:
$$(x_0, y_0), R$$

 $y = y_0 + \sqrt{R^2 - (x - x_0)^2} \rightarrow (\mathcal{L}) \begin{cases} p = -\frac{x - x_0}{\sqrt{R^2 - (x - x_0)^2}} \\ F(p) = y_0 - x_0 p + R\sqrt{p^2 + 1} \end{cases} \xrightarrow{p = -\cot\theta} F(p) = r/\sin\theta \xrightarrow{r}{\sin\theta} = y_0 + x_0 \frac{\cos\theta}{\sin\theta} + \frac{R}{\sin\theta}$
 $\begin{pmatrix} p = \frac{x - x_0}{\sqrt{R^2 - (x - x_0)^2}} \\ F(p) = y_0 - x_0 p + R\sqrt{p^2 + 1} \end{pmatrix} \xrightarrow{p = -\cot\theta} F(p) = r/\sin\theta$

$$y = y_0 - \sqrt{R^2 - (x - x_0)^2} \quad \rightarrow (\mathcal{L}) \begin{cases} p = \frac{\sigma}{\sqrt{R^2 - (x - x_0)^2}} & -F(p) = r/\sin\theta \\ F(p) = -y_0 + x_0p + R\sqrt{p^2 + 1} & \rightarrow & -\frac{r}{\sin\theta} = -y_0 - x_0\frac{\cos\theta}{\sin\theta} + \frac{R}{\sin\theta} \end{cases}$$

24

- 1. Determine (x_0, y_0) with the brightest band in Legendre Space
- 2. Iterative peak finding in *R* by minimizing the hit-to-track distance

