

Tracking System Upgrades for LHCb Phase-II

21-23, July, Huizhou 第二届粒子物理实验径迹重建研讨会

Mingjie Feng (冯铭婕, 中国科学院高能物理研究所)

LHCb Detector

- Single arm forward spectrometer ($2 < \eta < 5$)
 - Designed to study CP violation and rare decays in hadrons containing band c-quarks
- Evolution of LHCb
 - Pre-Upgrade (Run1, Run2)

•
$$\mathscr{L}_{peak} = 4 \times 10^{32} cm^{-2} s^{-1}, \mathscr{L}_{Int} = 9 f b^{-1}$$

- Upgrade I (Run3 & Run4)
 - $\mathscr{L}_{peak} = 2 \times 10^{33} cm^{-2} s^{-1}, \mathscr{L}_{Int} = 50 fb^{-1}$
- Upgrade II (Run5)
 - Peak luminosity increased by a factor of 5
 - Baseline: $\mathscr{L}_{peak} = 1.0 \times 10^{34} cm^{-2} s^{-1}$, $\mathscr{L}_{Int} = 270 fb^{-1}$
 - Other scenario: $\mathscr{L}_{peak} = 1.3 \times 10^{34} cm^{-2} s^{-1}$ \bullet
 - Sub-detector upgrade

Run 3 Run 4 Run 2 Run 5 Run 1 cm⁻²s LS3 LS2 LS4 S Peak luminosity [10³³ actual expected expected with improved LHC optics at Run 5 **Current Peak luminosity** 2 2015 2025 2040 2010 2020 2030 2035 Year

LHCb Tracking System

Status of LHCb UII tracking system

- **Standalone tracks**
 - 4D reconstruction for TV track lacksquare
 - New algorithm for UP track and MP track \bullet
 - Run3 algorithm reused for Scifi track \bullet
- Long tracks
 - Matching: TV tracks + MT tracks + UP tracks/UP hits \bullet
 - Forward: TV Tracks \rightarrow UP \rightarrow MT (ongoing)
- Upstream tracks
 - TV tracks + UP hits (UP tracks)
 - TV tracks + UP hits/UP tracks + Magnet hits (ongoing)
- **Downstream tracks**
 - MT tracks + UP tracks (UP hits)

VELO Pixels with Timing (TV)

- 32 layers of silicon pixels detector
- 150 μ m thick sensors with 10 μ m spatial resolution \bullet
- **Recover UI performance at UII conditions** \bullet
 - An additional 50ps time resolution per hit for PV reconstruction
 - Reduce material and improve spatial resolution for IP resolution

VELO Pixels with Timing (TV)

4D tracking algorithm

- Use seeding forwarding algorithm to get the best tracking candidate
 - Make 3 hits seed on consecutive 3 layers
 - Extrapolate seed to next layer
 - Choose hits based on $d\phi$, dr^2 and dt^2
- Fit tracks and update results (position, direction, time and state covariance matrix)

Upstream Pixel Tracker (UP)

- Chinese group contributes significantly
- 4 layers MAPS-based pixel detector
- Material budget ~ 1.2% per layer
- Hit rate for pp at X = 4 cm ~ 74 MHits/s/ cm^2
- UP plays a key role in LHCb tracking system
 - Fast estimates momentum for trigger system
 - Essential to reconstruct long lived particles, e.g. K_S^0 , Λ

R.L distribution (4 UP layers)

Hits map @ (UP layer1, $\mathscr{L}=1.0 \times 10^{34} cm^{-2}s^{-1}$, pp at 30MHz)

Upstream Pixel Tracker (UP)

- Traditional algorithm in LHCb U2 framework

אַ10ĭ

×10`

Magnet Station (MS)

- New sub-detector for UII
- Scintillating-based tracker located inside the magnet to provide measurements of the positions and directions of particles hitting the magnet side walls
- Improves momentum resolution of upstream tr
- Significant gains for modes with soft tracks (eg.

eacks (~10-20% →~1%)
.
$$D^{*+} \to D^0 \pi^+$$
)

Mighty-SciFi

- Twelve layers of scintillating fibres with SiPM readout
- Keep UI SciFi design at outer region but with significant improvements
 - Improve light collection using micro-lens (μ Lens) enhanced detectors.
 - Reduce SiPM noise by cryogenic cooling for SiPM: $-40^{\circ}C => -120^{\circ}C$

Mighty-Pixel

- 6 layers of silicon pixel (HV-CMOS MAPS)
- Spatial resolution: pixel size $< 100 \times 300 \ \mu m$
- Time resolution: ~ 3ns
- High radiation hardness

Fibre-Fibre (inplace)

Mighty Tracker

- Run3 algorithm reused for Scifi track \bullet
- MP track reconstruction \bullet
 - Combine T1T3 lines, then open search windows in T1, T2, T3
 - Collecting hits in remaining layers for each T1T3 pair
 - Fit & select track, select one with best $\chi^2/NDOF$

hits can be removed for a next search to find what the previous combination was not able to find

Case	T1 layer	T3
0	1 x	2
1	$\mathbf{2x}$	2
2	$1 \mathbf{x}$	1
3	2 x	1

$$x(z) \sim a + b \cdot z + c \cdot z^{2}(z)$$
$$y(z) \sim a + b \cdot z$$

layer $2\mathbf{x}$ $2\mathbf{x}$ $\mathbf{1x}$ \mathbf{lx}

Upstream Track

- Extrapolate TV Tracks to find search window of each UP layer (2×2 chips, 40×40 mm)

• Loop all the hits in search windows and fit with linear model to get the best track candidate

Long Track

• Matching TV tracks and MT tracks

- Extrapolate TV and MT tracks to a common Z-plane
- Fast Pre-Filter: Discard candidates with large Y-mismatches \bullet
- Precision Matching: cut on χ^2 and MLP score
 - Compute χ^2 from position/angle differences, with dynamic error scaling
 - $\chi^2 = (\Delta X^2/tolX) + (\Delta Y^2/tolY) + (\Delta Ty^2 \times 625)$
 - Evaluate match quality via MLP (6 inputs \rightarrow mlp score)
 - Inputs: ΔX , ΔY , ΔTx , ΔTy , χ^2 , TV $tx^2 + ty^2$

Add UP tracks/UP hits into matched TV-MT tracks

Downstream Track

- Matching UP tracks and MT tracks
- lacksquare
- Without Kalman filter yet, the fake rate will reduce significantly with KF

Same algorithm with TV-MT matching, MT tracks matched UP tracks instead of TV tracks

Reconstruction of physics decays

Reconstruct tracks on Upgrade2 simulation — Use Long Track

- Clear mass peak visible \bullet
- Well separated for $B_s^0 \to \mu^+ \mu^-$ and $B^0 \to \mu^+ \mu^-$

Summary

- All the sub-detectors of LHCb tracking system will upgrade in UII
- Nearly the entire tracking system will be constructed using high-resolution silicon pixel detectors
- The goals for UII is keep or improve detector performance as in UI
- The reconstruction algorithm development for UII is still ongoing

Backup

Backup

16

COFFEE

COFFEE development

Team:

IHEP, CAS / KIT / Zhejiang U / Hunan U / Shandong U / NPU / Dalian Minzu U ···

COFFEE 2 First HVCMOS 55nm prototype chip

- Breakdown at -70V
- Responsive to laser, X-ray
 - and beta-ray sources

2022

2023

COFFEE1

- Prototype in LL process
- Validation of deep N-well structure
- Breakdown at -9V

COFFEE3

- -

Two pixel arrays with data-driven readout Designed for good timing resolution and moderate power consumption

17

Possible MAPS solutions

• UP Sensor requirements

- Good spatial resolution especially in horizontal
- High radiation hardness: $3 \times 10^{15} n_{eq}/cm^2$
- Frontend design provide good timing resolution: 3-5 ns

• Candidate technologies: HV- or LV-CMOS

Technology	HV-CMOS	LV-CMOS	
AMS/TSI 180nm	✓		
TowerJazz 180nm		✓	
LF 150nm	✓		
TPSCo 65nm		✓	
SMIC 55nm	✓		
PMOS N nw deep p-substrate	charge signal	nw p-substrate	PMOS nw deep p

Large collection electrode

Small collection electrode

Parameter	UP Specification
Pixel size in x	$\leq 100 \mu m$
Pixel size in y	$\leq 100 \mu m$
Substrate thickness	< 200µm
Pixel orientation	Central sym.
Max. Particle Rate (R_{part})	74 (34) MHz/cm ²
Max. Hit Rate	150 Mhit $s^{-1}cm^{-2}$
Max. Length of the data word	32
Overall efficiency	> 96%
In-time efficiency	> 99% within 25ns
Noise rate (End of life)	\leq 400kHz/ <i>cm</i> ²
Transmission rate	N×1.28 Gbit/s
NIEL	$3 \times 10^{15} n_{eq}/cm^2$
TID	240 MRad
Power Consumption	$\leq 300 \text{ mW}/cm^2$

UP Specification

_
]

HCh