

KalmanFilter-based alignment in ACTS

Xiaocong Ai (ZZU)

On behalf of the ACTS-alignment team

2nd Tracking Workshp in Particle Physics Experiments, Huizhou, July 23, 2025

ACTS recap

ACTS project

- A modern **open-source detector-independent** tracking toolkit for current&future HEP experiments based on LHC (and beyond) tracking experience
 - Data production by ATLAS, FASER, sPHENIX (see talks of J. Osborn and S. Zhang)
 - Detector R&D by CEPC, STCF, EIC, ePIC, LDMX... (see talks of Y. Zhang and J. Zhang)
- A R&D platform for ML-based tracking, heterogeneous computing and 4D tracking (see talks of A. Salzburger, V. Cairo and Y. Wang)

ACTS design and functionalities

- Fully C++20 compliant, template design, strict thread-safety, contextual condition data ...
 - More in <u>A. Salzburger's slides</u>

- Track fitting
 - (Extended) Kalman Filter (KF),
 Gaussian Sum Filter, Non-linear KF
 - Global chisq fitter
- Track finding
 - Seeding, Combinatorial Kalman Filter (CKF), Graph Neural Networks, Hough Transform
- Vertex finding&fitting
 - Primary vertex: AMVF, IVF
- KF-based Alignment (prototype developed in 2022 and being slowly validated and optimized)

ACTS tracking geometry

- Tracking geometry is simplified from detailed full simulation geometry for fast navigation, but with material effects well taken into account
- Different concrete surfaces types for various tracking detectors
 - A surface has shape, bounds, rotation+translation, local coordinates and unique identifier...

ACTS track parameterization

 6-dimensional bound/local track parameters (integration of particle flight time in track propagation)

$$ec{x} = \left(l_0, l_1, \phi, heta, q/p, t
ight)^T$$

• Measurement (1, 2, or 3 dimension) is a subset of the 6 parameters: $\vec{m} = H \cdot \vec{x}$

Alignment in ACTS

Why alignment matters?

See more in P. Bruckman's talk

- Limited detector placement precision upon installation
- Misalignment is the dominant source of measurement resolution degradation
 - Degradation of tracking precision and efficiency, and eventually **physics precision**!

From <u>G. Steinbruck</u>

Alignment Parameters

- Detector element placement description:
 - Translation (3 parameters) + Rotation (3x3 rotation matrix)
- Alignment parameters (6 parameters for now):
 - Translation + Rotation about original local axes $(\vec{x}_L, \vec{y}_L, \vec{z}_L)$ using Euler angles
 - Suppose rotation in the order: 1) around \vec{x}_L about $\alpha \to 2$) around \vec{y}_L about $\beta \to 3$) around \vec{z}_L about

 $\boldsymbol{\gamma}$, then the new local axes become

 $(\vec{x}_L^{\prime\prime\prime\prime}, \vec{y}_L^{\prime\prime\prime\prime}, \vec{z}_L^{\prime\prime\prime\prime}) = (\vec{x}_L, \vec{y}_L, \vec{z}_L) \begin{pmatrix} \cos\beta\cos\gamma & \sin\alpha\sin\beta\cos\gamma - \cos\alpha\sin\gamma & \cos\alpha\sin\beta\cos\gamma + \sin\alpha\sin\gamma \\ \cos\beta\sin\gamma & \sin\alpha\sin\beta\sin\gamma + \cos\alpha\cos\gamma & \cos\alpha\sin\beta\sin\gamma - \sin\alpha\cos\gamma \\ -\sin\beta & \sin\alpha\cos\beta & \cos\alpha\cos\beta \end{pmatrix}$

Caveat: a rotation can be expressed in 24 equivalent sequence of Euler angles

Geometry Context

Ideas of track-based alignment

- Tracks share the same detector geometry (a.k.a. global track parameters $\vec{\alpha}$) while they have their own track parameters (a.k.a. local track parameters \vec{x}_i)
- The global track parameters can be estimated by minimizing the χ^2 sum of a set of good quality tracks:

$$\chi^2 = \sum_i \chi_i^2 = \sum_i [\vec{m_i} - \vec{h_i}(\vec{x_i}(\vec{\alpha}), \vec{\alpha})]^T V^{-1}[\vec{m_i} - \vec{h_i}(\vec{x_i}(\vec{\alpha}), \vec{\alpha})]$$

• This involves solving the non-linear equation iteratively, i.e. $\vec{\alpha}$ is updated iteratively to approach its optimal value:

$$\frac{d^2\chi^2}{d^2\vec{\alpha}}\mid_{\vec{\alpha_0}}\Delta\vec{\alpha} = -\frac{d\chi^2}{d\vec{\alpha}}\mid_{\vec{\alpha_0}}$$

The Kalman Filter fitter is used to fit each track in each iteration

Alignment ingredients

Residual derivative

Suppose the rotation around the original local axes (α, β, γ) is small, then

$$\frac{\partial \vec{x}_L''}{\partial (\alpha, \beta, \gamma)} = \begin{pmatrix} \vec{x}_L & \vec{y}_L & \vec{z}_L \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} = R \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$$
$$\frac{\partial \vec{y}_L''}{\partial (\alpha, \beta, \gamma)} = \begin{pmatrix} \vec{x}_L & \vec{y}_L & \vec{z}_L \end{pmatrix} \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} = R \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
$$\frac{\partial \vec{z}_L'''}{\partial (\alpha, \beta, \gamma)} = \begin{pmatrix} \vec{x}_L & \vec{y}_L & \vec{z}_L \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = R \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Residual $\vec{r} = (r_{x_i} r_y)$:

 $r_x = (\vec{x}_{track} - \vec{o}_{module}) \cdot \vec{x}_L - x_{hit}$

$$r_y = (\vec{x}_{track} - \vec{o}_{module}) \cdot \vec{y}_L - y_{hit}$$

*x*_{track} is the intersection of track with detector module
 ≻ Changed with *o*_{module} and *x*_L, *y*_L, *z*_L
 *o*_{module} is the center of the detector module
 *x*_{hit} and *y*_{hit} are hit local position on module

An alignment prototype

- It takes a set of tracks and sort out the sets of detector elements which can be and requested to be aligned => the initial value of $\vec{\alpha}$
- Perform the fit for each track using $\vec{\alpha}$, and estimate the χ^2 derivatives w.r.t. $\vec{\alpha}$
- Solve the equation to obtain $\Delta \vec{\alpha}$
- Update $\vec{\alpha}$ to become $\vec{\alpha}'$ using provided alignment parameter updater
- Stop iteration of the above three steps when provided converging criteria is met

ACTS Alignment example

Sanity check with a telescope-like detector

- Particle Gun:
 - 10k muon per event, p = 10 GeV, direction of momentum // x-axis
 - Vertex: x, t=0, y and z~2D Gaussian with $\sigma_y = \sigma_z = 2 \text{ mm}$
- Alignment degree of freedom: Ty+Tz+Rz
- Only align the misaligned layers

25 x 25 um2 resolution

Residual with misalignment + aligned

Credit to Z. Sun for the plots

Summary

- ACTS is a tracking software, but also provides ingredients for alignment
 - Validated with a toy telescope-like detector. Validation with more realistic Open Data Detector is in progress
 - Only surface/module-wise for now. Superstructure alignment will come soon
- Minimization needs to be handled externally by the users, e.g.
 Mille-Pede.
 - A toy minimization based on Eigen solver is in place more for proof of principle
- Join us if you are interested:
 - https://mattermost.web.cern.ch/acts/channels/acts-alignment

