Track-based alignment of the BESIII tracker with cosmic-ray data

Jiajv Wang (WHU), Jiazhen Yan (WHU / PKU), Zeheng Zhang (IHEP), Yaxuan Li (NKU), Linghui Wu (IHEP), Aiqiang Guo (IMP), Liangliang Wang (IHEP), Mingyi Dong (IHEP), Liang Sun (WHU), Dayong Wang (PKU), Minggang Zhao (NKU)

July 23, 2025

Beijing Spectrometer (BESIII) Experiment

- BESIII at the BEPCII accelerator is for the studies of hadron physics and τ-charm physics with the highest accuracy achieved until now
- The Multilayer Drift Chamber (MDC) used
 to measure the trajectory, momentum, and
 dE/dx of charged particles for particle
 identification (PID)

•

BESIII MDC

- 6792 cells in 43 cylindrical layers
 - ➢ Inner chamber: Layer 1∼8
 - > Outer chamber:
 - ✓ Layer 9~20 in six steps
 - ✓ Layer 21~43 fixed at big out endplates

Upgrade of inner tracker

- Significant aging effect observed in the inner chamber
 - ➢ Gain decreases with time
 - > Degradation of hit efficiency and spatial resolution year by year
- Inner chamber upgraded to CGEM (Cylindrical Gas Electron Multiplier) in 2024

CGEM Inner Tracker

- CGEM structure (5 sheets of 3 layers)
 - Layer1 (1 sheet); Layer2 (2 sheets); Layer3 (2 sheets)
- Each layer consists of
 - ➤ Cathode
 - ➢ GEM1, GEM2, GEM3
 - ➢ Anode
 - ➢ Readout
- Readout: X strips and V strips

Structure of CGEM

Anode

readout

strips

X-strip

V-strip

Readout strip and cluster reconstruction

- Readout structure
 - ➤ X strips parallel to the Z-axis
 - ➢ V strips have an angle with Z-axis around 30 40 degrees
 - Combine signals on both X and V strips to reconstruct the 2D cluster
- Cluster reconstruction method
 - Charge Centroid (CC): applied to the current alignment
 - \checkmark For track direction close to the ionization electrons drifting
 - Micro-TPC method
 - \checkmark For track direction very different from the ionization electrons drifting

Mechanical imperfection during upgrade

- During the upgrade, the displacement between the CGEM and MDC could exceed 1 mm
- Relative displacement between different CGEM layers, especially in z could be more than 1mm
 - Refer to A.Q. Guo, L.H. Wu et al., NIM A 1050 (2023)
- Significant misalignment effect observed in the cosmic-ray data analysis
- Track-based alignment is essential for track reconstruction

Strategy of Alignment

- **Step I**: Preliminary alignment, especially for estimating the rotation around z of CGEM, with cosmic-ray data without magnetic field
 - Strong correlation between Lorentz angle and rotation of the cylinder around z (both cause a shift of clusters in φ)
- **Step II**: Preliminary calibration of the Lorentz angle combining the cosmic-ray data with magnetic field
- **Step III**: Precise alignment combining cosmic-ray and collision data, based on preliminary results from cosmic-ray data

Cosmic-ray data sample

- Cosmic-ray data with and without magnetic field (taken in March and
 - April, 2025)

Without Magnetic field

With Magnetic field

Alignment parameters of MDC

- 6 steps + 1 outer endplate for each side
- 6 degrees of freedom for each component
 ≻Translation in x, y and z (Dx, Dy, Dz)
 >Rotation in x, y and z (Rx, Ry, Rz)
- Some degrees of freedom constrained to guarantee the stability and avoid weak modes
 ➢Rx, Ry, Dz
- 42 alignment parameters in total

Alignment parameters of CGEM

- 3 layers (5 sheets)
 - >2 sheets in layer 2 and 3
- 6 degrees of freedom for each component
 ➤ Translation in x, y and z (Dx, Dy, Dz)
 ➤ Rotation in x, y and z (Rx, Ry, Rz)
- 30 alignment parameters in total

Constraints of alignment parameters

• Choose the outer endplates of MDC as reference

≻The average displacement of both outer endplates fixed

- For cosmic-ray data, Dy of each component fixed due to lack of horizontal tracks
- Each cylinder of CGEM assumed as rigid body, deformation not considered at the first stage

Workflow

- CGEM cluster reconstruction
- Track reconstruction: <u>Refer to Yaxuan's talk in the morning session</u>
 - ➢ Hough Transform method for track reconstruction without magnetic field
 - Legendre Transform method for track reconstruction with magnetic field

Alignment method

- Millepede method:
 - ① Residual (measured value fitted value)
 - Constructing the Chi-Square of least square method
 - ③ Minimize Chi-Square and construct parameter equations.
 - (4) Solve the equation to get the estimation of
 - alignment parameters

Alignment results

- First attempts to align CGEM+ODC using cosmic-ray
 - > Preliminary results of cosmic-ray data without magnetic field
 - > Alignment of cosmic-ray data with magnetic field ongoing

V residual vs z

19

Summary

- Significant misalignment effect in tracking observed after inner tracker upgrade
- First attempts to align CGEM+ODC using cosmic-ray (with/without magnetic field) are underway

Back up

Misalignment effect

• Mechanical imperfection during the detector construction and assembly can cause the bias of track reconstruction and degradation of momentum resolution

