

# Vertex reconstruction at STCF

#### Mingyu Yu Xingtao Huang Teng Li **Shandong University**

Workshop of Track Reconstruction in Particle Physics ExPerments, Huizhou, 7/23/2025

# 01

### Motivation

# 03

### Performance



#### Contents

### **Fitting Method**

02

### 04 Summary





### Motivation part one





### lotivation

Fitting Method

performance

#### Summary

### Motivation

2~7*Gev* 

#### > Proposal of the Super Tau-Charm Facility (STCF)

- **BEPCII/BESIII** is expected to run for another decade Major advances in XYZ states, light-flavor exotics, and charm physics have brought Chinese
- particle physics to the forefront internationally.
- Further exploration of hadron structure and new physics beyond the SM

|                                     |                                                       | 291 cm 🔶   |
|-------------------------------------|-------------------------------------------------------|------------|
| STCF                                | BesIII                                                |            |
| peak luminosity:                    | peak luminosity:<br>$1 \times 10^{33} cm^{-2} c^{-1}$ | 185 cm     |
| $0.5 \times 10^{35} cm^{-2} s^{-1}$ | center-of-mass energy:                                | 149 cm 🔶 🕨 |
| $2 \sim 7 Gev$                      | 2~4.6 <i>Gev</i>                                      | 105 cm     |

#### **STCF Data Characteristics**

High-statistics + High-background + High- $\bullet$ precision

20 cm16 cm 11(9.8) cm





SuperTau-Charm Facility, STCF



### lotivation



performance

Summary

### Motivation

#### > The vertex fitting tool at STCF is adapted from BESIII

Event vertex reconstruction is a key component of STCF data analysis and a prerequisite for physics studies.

• VertexFit:

Vertex constraint requires all final-state tracks come from a common point in 3D space

- (1)Optimize track parameters ③Suppresses fake tracks in tracking

(1) optimizes intermediate particle parameters ②suppresses backgrounds







#### Limitations of VertexFit

- Each decay vertex is fitted separately
- Neutral particles are not fully utilized vertex fitting is not applicable to neutrals

(Long-Lived Particles ) $\Sigma^+ \to P\gamma$ 

Decay Vertex: Not Available

#### **Global Vertex Fitting in Belle II**

Developed based on the Kalman filter

- KFit: Fits each decay vertex separately
- TreeFit:Performs global vertex fitting across the decay chain

#### **Global vertex fitting is planned for STCF! ! !**



#### Affects the four-momentum of neutral particles in kinematic fitting

#### (assumed to originate from the interaction point)





# **O D Fitting Method**





# Fitting Method

performance

Summary

### **Lagrange Multiplier Method**

### Vertex Fit & Global Vertex Fit — Core Objective To find the optimal set of physical parameters

**Least Squares Method** 

Estimate parameters by minimizing the sum of squared differences between measured values and theoretical predictions.

$$\chi^{2} = (X - X_{0})^{T} V^{-1} (X - X_{0}) = min \qquad (X_{0})^{T} V^{-1} (X - X_{0})^{T} V^{-1} (X - X_{0}) = min \qquad (X_{0})^{T} V^{-1} (X - X_{0})^{T} V^{-1} (X - X_{0}) = min \qquad (X_{0})^{T} V^{-1} (X - X_{0})^{T} V^{-1} (X - X_$$

Lagrange Multiplier Method (Constrained Least Squares) Use Lagrange multipliers ( $\lambda$ ) to convert a constrained least squares problem (n variables, m constraints) into an unconstrained one with (n + m) variables.

$$\chi^2 = (X - X_0)^T V_0^{-1} (X - X_0) + 2\lambda^T h(X) =$$

Cannot handle constrained cases

X - measured values

- theoretical predictions)

 $(V^{-1}: \text{Covariance Matrix of Parameters})$ min

(h(X) - constraint equations)



# Fitting Method

performance

Summary

### **Lagrange Multiplier Method**

> State vector solution

 $\chi^2 = (X - X_0)^T V_0^{-1} (X - X_0) + 2\lambda^T h(X) = min$ 

• Minimizing the Chi-Square Function:

$$\frac{d\chi^2}{dX} = 0, \qquad \frac{d\chi^2}{d\lambda} = 0, \qquad X_0 \quad \text{(initial points)}$$

Nonlinear constraints complicate the solution; Taylor expansion is applied to ulletlinearize them

• Solution of the state vector

$$X_{\alpha} = X_{\alpha-1} - V_0 H^T \lambda \quad ,$$

parameters)  $\rightarrow X(\text{optimal solution})$ 

 $X_{\alpha-1}$ ),  $H = -\frac{\partial h(X)}{\partial X}$ Iteration  $X_{\alpha-1}$ ) +  $2\lambda^T h(X_{\alpha}) = 0$  $\lambda = V_D h(X_\alpha)$  $V_D = (HV_0 H^T)^{-1}$ 



#### Fitting Method

performance

Summary

### Lagrange Multiplier Method

#### Constraint equations for vertex fitting

Vertex constraint: All final-state charged tracks from the decay are constrained to pass through a common vertex in three-dimensional space.

 $\begin{bmatrix} r - \varphi \text{ Plane Constraint:} & p_{x_i} \Delta y_i - p_{y_i} \Delta x_i - \\ 3D \text{ Surface Constraint:} & \Delta z_i - \frac{p_{z_i}}{a_i} \sin^{-1} [a_i(p_x - \Delta x_i) - x_i] \\ (\Delta x_i = x_x - x_i) & \text{Decay Vertex} \end{bmatrix}$ 

(Shared among all charged tracks)

#### Constraint equations for second vertex fitting

• for neutral particle: • for charged particle:  $\begin{cases}
x_p - x_d + \frac{p_x}{m}c\tau = 0; \\
y_p - y_d + \frac{p_y}{m}c\tau = 0; \\
z_p - z_d + \frac{p_z}{m}c\tau = 0;
\end{cases}$ • for charged particle:  $\begin{cases}
x_p - x_d + \frac{p_x}{a}sin(ac\tau + \frac{p_y}{a}sin(ac\tau + \frac{p_y}{a}sin$ 

(Subscriptp:production vertex; Subscriptd:decay vertex)

$$-\frac{a_i}{2}(\Delta x_i^2 + \Delta y_i^2) = 0$$
(i:The i-th charged track)  
 $x_i \Delta x_i + p_{y_i} \Delta y_i)/p_{T_i}^2] = 0$ 
tion )
Inserting into the  $\chi^2$  expression, a simultaneous fit is applied to all tracks.
Reconstruct the decay vertex and momentum of the intermediate particle

$$- x_{d} + \frac{p_{x}}{a} sin(ac\tau/m) + \frac{p_{y}}{a} (1 - cos(ac\tau/m)) = 0; - y_{d} + \frac{p_{y}}{a} sin(ac\tau/m) + \frac{p_{x}}{a} (1 - cos(ac\tau/m)) = 0; - z_{d} + \frac{p_{z}}{m} c\tau = 0;$$

6



# Fitting Method

### Kalman filter

#### **Belle II Global Vertex Fitting** — based on the Kalman filter

Recursive estimation of particle states under uncertainties and constraints, with optimal parameters and error matrix output.

$$\chi^{2} = (X_{\alpha} - X_{\alpha-1})^{T} C_{\alpha-1}^{-1} (X_{\alpha} - X_{\alpha-1}) + (m - h(X_{\alpha}))^{T} V_{m}^{-1} (m - h(X_{\alpha})) = min$$
1: Covariance Matrix of Parameters) (V<sup>-1</sup>: Measurement covariance matrix) (m - h(X\_{\alpha}): Residual)  
Matrix inversion is limited to the constraint dimension, simplify calculation

 $(C_{\alpha-1}^{-1})$ 

#### > State vector solution

performance

Summary

7

$$\frac{d\chi^2}{dX} = 0$$

L

Solution of the state vector  $\bullet$ 

$$X_{\alpha} = X_{\alpha-1} - K_{\alpha}r_{\alpha}$$

$$(K_{\alpha} = C_{\alpha-1}HR_{\alpha}^{-1} - \text{Kalman gain matrix})$$
$$(r_{\alpha} = m - h(X_{\alpha}) - \text{Residual})$$
$$(R_{\alpha} = V + H_{\alpha}^{\alpha-1}C_{\alpha-1}(H_{\alpha}^{\alpha-1})^{T} - \text{residual covariance matrix})$$



# Fitting Method

performance

Summary

### Kalman filter

#### **Global Vertex Fitting based on Kalman Filter**

• Global state vector: includes all particles' information

Improve fitting performance degraded by poorly measured particles

Intermediate pa

#### • Decay Vertex:

Global vertex fitting uses a geometric method to compute the initial decay vertex:

- If two or more charged tracks exist, the two with highest  $\bullet$ momentum are selected, and their point of closest approach in 3D space is calculated as the initial decay vertex.
- This vertex is further refined during fitting with additional constraints. ullet

#### • decay length $\theta$

The decay length is extracted using a vector triangle based on the decay geometry.

#### Final-state particle: $(p_x, p_y, p_z)$

article   
Resonance: 
$$(p_x, p_y, p_z, E)$$
  
Long-lived:  $(x, y, z, \theta, p_x, p_y, p_z, E)$ 







# **Berformance** part three





Fitting Method

### rformance

#### Summary

### VertexFit - SecondVerexFit

#### Evaluate Vertex Fitting Performance using charged track information from different spatial locations

 $I/\psi \to \Lambda \overline{\Lambda} \to (p\pi^{-})(\overline{p}\pi^{+})$ 

- First : Reconstructed position of the first hit of the charged track; material effects before this point are not considered.
- Poca: The point where the charged track is extrapolated to be closest to a reference point in the xy plane, with material effects during propagation taken into account.

#### $\succ$ Residual of Reconstructed Momentum of $\Lambda$



Poca: Taking more material effects First: Taking less material effects





Fitting Method

#### rformance

Summary

### VertexFit - SecondVerexFit

#### Evaluate Vertex Fitting Performance using charged track information from different spatial locations

 $J/\psi \to \Lambda \overline{\Lambda} \to (p\pi^{-})(\overline{p}\pi^{+})$ 



Figure. Invariant Mass Residuala vs A Decay Vertex in xy Plane



Fitting Method



#### Summary

### VertexFit - SecondVerexFit

#### Evaluate Vertex Fitting Performance using charged track information from different spatial locations

 $J/\psi \to A\overline{A} \to (p\pi^{-})(\overline{p}\pi^{+})$ 





Fitting Method

#### rformance

Summary

### VertexFit - SecondVerexFit

#### Evaluate Vertex Fitting Performance using charged track information from different spatial locations

$$J/\psi\to A\overline{A}\to (p\pi^-)(\overline{p}\pi^+)$$

The differences in the reconstructed helix parameters  $d_{\rho}$  and  $d_{z}$  are relatively small



Figure. DecayLength Residuala vs A Decay Vertex in xy Plane

#### Material effects primarily affect the reconstructed momentum of the particle!



#### > Evaluate Global Vertex Fitting performance based on different physics processes

 $\succ$ 

Using the First hit informaion

 $\succ$  Invariant Mass Spectrum of  $\Lambda$ 



Invariant Mass Residuala vs A Decay Vertex in xy



13



### GlobalVertexFit

#### > Evaluate Global Vertex Fitting performance based on different physics processes

Err of DecayLength

 $J/\psi \to \Lambda \overline{\Lambda} \to (p\pi^{-})(\overline{p}\pi^{+})$ 

Using the First hit informaion

DecayLength



DecayL Residuala vs A Decay Vertex in xy 



Std Dev: 0.16061 Std Dev: 0.09938

![](_page_19_Figure_0.jpeg)

### GlobalVertexFit

#### Evaluate Global Vertex Fitting performance based on different physics processes

 $J/\psi\to \varSigma^+(Pr)\overline{\varSigma}(\pi_0(rr)\overline{P})$ 

Using the First hit informaion

 $\succ$  Invariant Mass Spectrum of  $\Sigma^+$ 

▷ DecayLength of  $\Sigma^+$ 

![](_page_19_Figure_7.jpeg)

≻DecayLerr of  $Σ^+$ 

![](_page_19_Figure_9.jpeg)

![](_page_20_Figure_0.jpeg)

### GlobalVertexFit

#### > Evaluate Global Vertex Fitting performance based on different physics processes

 $J/\psi \to \Sigma^+(Pr)\overline{\Sigma}(\pi_0(rr)\overline{P})$ 

Using the First hit informaion

 $\succ$  Decay Length Resolution of  $\Sigma^+$ 

![](_page_20_Figure_6.jpeg)

Global vertex fitting shows good performance on STCF and addresses the limitations of the VertexFit

#### $\blacktriangleright$ Decay Length Resolution of $\overline{\Sigma}$

![](_page_20_Figure_10.jpeg)

![](_page_21_Picture_0.jpeg)

# Summary

#### part four

![](_page_21_Picture_3.jpeg)

![](_page_22_Picture_0.jpeg)

Fitting Method

Performance

#### Summary

### Summary

#### Summary Summary

- This report introduces two vertex reconstruction algorithms on STCF: the Lagrange  $\bullet$ multiplier-based VertexFit and SecondVertexFit algorithms, and the Kalman filter-based GlobalVertexFit algorithm.
- In this study, we performed vertex fitting using both the Poca point and the First point, and ulletcompared their performance. The material effects were found to mainly impact the reconstructed momentum.
- Based on these tests, we also compared the performance of the GlobalVertexFit and VertexFit  $\bullet$ algorithms. Results show that GlobalVertexFit works well on STCF and provides better handling of neutral particles compared to VertexFit.

![](_page_23_Picture_0.jpeg)

![](_page_23_Picture_1.jpeg)

![](_page_23_Picture_3.jpeg)

![](_page_24_Figure_0.jpeg)

![](_page_24_Figure_1.jpeg)

![](_page_25_Picture_0.jpeg)

研究背景与意义

### backup

➢lam: The fraction of particles decaying within each detector layer

| [ | Θ,   | 30)  | 1969893 | I | 40.  |
|---|------|------|---------|---|------|
| Ι | 30,  | 36)  | 286961  | I | 5.   |
| Ι | 36,  | 98)  | 1744768 | 1 | 36.3 |
| [ | 98,  | 160) | 599260  |   | 12.4 |
| Γ | 160, | 200) | 125439  | I | 2.   |
| Γ | 200, | 850) | 93173   | 1 | 1.   |
|   |      |      |         |   |      |

研究进展

研究方法

总结与展望

backup

![](_page_25_Picture_8.jpeg)

![](_page_26_Picture_0.jpeg)

### backup

> Global Vertex Fit Strategy for Neutral Particles  $(p_x, p_y, p_z, p_x, p_y, p_z, x, y, z, \theta, p_x, p_y, p_z, E)$  $\Sigma^+$ p  $\gamma$ 

• Constraint Application Order (1)track

Update the momentum and vertex position of charged particles based on reconstructed track information

(2)photo

Update the photon momentum using the vertex information refined by the track update.

![](_page_26_Figure_9.jpeg)

![](_page_27_Figure_0.jpeg)

### > Difference of Helix Parameters(First - Poca) d, Difference (First - POCA) hDiff\_0

![](_page_27_Figure_2.jpeg)

![](_page_27_Figure_3.jpeg)

0.005

First - Poca - Difference

![](_page_28_Picture_0.jpeg)

### backup

. . . .

研究背景与意义

研究方法

研究进展

总结与展望

backup