

Vertex Fitting at BESIII

Yupeng Pei

University of Science and Technology of China

2nd workshop on Tracking in Particle Physics Experiments Guangdong · Huizhou

2025.07.23

Outline

- Introduction
- 3 Vertex Fitting Algorithm in BESIII
 - VertexFitAlg (From Xu Min)
 - VertexFitRefineAlg (From Hao-Kai Sun)
 - VertexFitUpgradeAlg
- Secondary Vertex Fit
- Summary

Introduction

- $10^{10} J/\psi$ data at BESIII ! \Rightarrow Hyperon factory \Rightarrow Many interesting physics
 - Hyperon CP violation
 - Rare decay (Weak radiative decay and Semi-leptonic decay)
 - Hyperon EDM
- More hyperon samples \Rightarrow Need more accurate vertex reconstruction

Hyperon	$Br(J/\psi \to Y\overline{Y})(\times 10^{-3})$	$N_B(imes 10^6)$	<i>cτ</i> (<i>cm</i>)	Decay Mode
Λ	1.89 ± 0.09	18.9 ± 0.9	7.89	$\Lambda \rightarrow p\pi^-$ (63.9%)
Σ^+	1.07 ± 0.04	10.7 ± 0.4	2.40	$\Sigma^+ \rightarrow p \pi^0 (51.6\%)$
Σ^0	1.17 ± 0.03	11.7 ± 0.3	~ 0	$\Sigma^0 \rightarrow \gamma \Lambda ~(\sim 100\%)$
	0.97 ± 0.08	9.7 ± 0.8	4.91	$\Xi^- ightarrow \Lambda \pi^- ~(\sim 100\%)$
Ξ0	1.17 ± 0.04	11.7 ± 0.4	8.71	$\Xi^0 \rightarrow \Lambda \pi^0 ~(\sim 100\%)$

Statistical uncertainty $\sim 0.1\%$ level!

BEPCII and **BESIII**

Double ring: e^+ and e^- Cross angle: 22 mrad E_{cm}: 1.84 – 4.95 GeV Peak luminosity: $1.1 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1} @ \psi(3770)$

Electromagnetic Calorimeter CsI(Tl): L = 28 cm

- Barrel $\sigma_E/E = 2.5\%$ @ 1 GeV
- Endcap $\sigma_E/E = 5.0\%$ @ 1 GeV

Main Drift Chamber

Small cell, 43 layer

- $\sigma_{xy} = 130 \,\mu m$
- $dE/dx \sim 6\%$
- $\sigma_p / p = 0.5\% @ 1 \text{ GeV}/c$

Time Of Flight Plastic scintillator

 σ_T (barrel) = 68 ps

Muon Counter

Endcaps: 8 layers

Barrel: 9 layers

RPC

 σ_T (endcap) = 110 ps (update to 60 ps with MRPC)

VertexFitAlg

•

•

- Basic requirements: Multi-track intersect at the same point •
- Method: Lagrange Multiplier-Based Least Squares Method ٠

$$\chi^{2} = (\alpha - \alpha_{0})^{T} V_{\alpha 0}^{-1} (\alpha - \alpha_{0}) + (x - x_{0})^{T} V_{x 0}^{-1} (x - x_{0}) + 2\lambda^{T} (D\delta\alpha + E\deltax + d)$$

 α : Track parameters (7n)
 x : Vertex parameters (3)
Results: vertex x and updated track pars
Vertex Fit
Long-lived particles reconstructed by VertexFitAlg
 $\cdot \Lambda \rightarrow p\pi^{-}$

• $\Xi^- \to \Lambda \pi^-$

Pei Yupeng (裴宇鹏)

-

Chi-squre < Cut2

Fitting Failed

Fitting Succeeded

Track Helix Type at BESIII

- ZHelix: Default way; POCA as Ref-points; Material effects including from BP to MIW
- FHelix: First hit in MDC as Ref-points

Issues of VertexFitAlg for Long-lived Particles

- No suitable helix type from BP to MIW Extrapolate Alg?
- Using helix type need hypothesis

Decay point auto-finding ?

VertexFitRefineAlg

- A unified algorithm to schedule different helix types.
 - **Point Finding**: iteration by VertexFitAlg
 - Extrapolation: correct material effects
 - Fit: newhelix as input to do VertexFitAlg

Issues with VertexFitRefineAlg

- A Mass systematic shift when $L_{xy} > 10$ cm
- From VertexFitRefineAlg, Λ far from IP decay \Rightarrow reconstruct smaller decayL \Rightarrow wrong mass

• For $L_{xy}(Tru) > 10$ cm, 8% events reconstructed wrong decay length \Rightarrow Mass shift

Wrong Vertex Reconstruction

- 2 intersection points in xoy, vertex fit gives a wrong vtx
- Wrong vertex \Rightarrow wrong ext \Rightarrow wrong mass
- Unsuitable initial value \Rightarrow wrong points •

PimTrk

amDecTru

25

20

Point2

What's Wrong with Input WTrackParameter?

- Input of VertexFitAlg: WTrackParameter (7 pars: $E, p_x, p_y, p_z, x, y, z$)
- General WTrackParameter: $(\mathbf{P}, \vec{x}) @ Poca$

FHelix and NewHelix also @ Poca

- Poor z resolution @ BESIII ⇒ Two solutions of VertexFitAlg
 For far decay, initial value far away from true point ⇒ Wrong decay point
- VertexFitRefineAlg need upgrade:
 - Point Finding: iteration by VertexFitAlg Need new method
 - Extrapolation: correct material effects
 - Fit: newhelix as input to do VertexFitAlg
 - WTrackParameter need Modify

VertexFitUpgradeAlg

- 2 charged tracks or 1 charge + 1 neutral virtual
- Similar with VertexFitRefineAlg, some upgrades:
 - **Point Finding**: compare $|\Delta z| @ 2$ points
 - Extrapolation: correct material effects
 - Construct New Helix: helix pars @ decay point
 - Fit: newhelix as input to do VertexFitAlg
- About Point Finding Alg:

Pei Yupeng (裴宇鹏)

Compare χ^2 : not working

Using Hits Info: not include from standard official output

Point Finding

Intersection

• 2 decay point solutions in $xoy \rightarrow$ How to select the correct one?

c1 ()^{a2}

Projection Circle 2

- 2 solutions in xoy; but 2 helixes only have 1 point in xyz.
 - $\Delta Z(Point) = |z_p z_{\pi^-}|$ @ Point
 - Select the min{ $\Delta Z(A), \Delta Z(B)$ }

Separation or

Containing

- Only one solution
- Nearest point between 2 circles

Construct New Helix

- Using point as a reference point, the 5-parameters and error of helix are obtained, coordinate frame as x'y'z'
- Set the WTrackParameter of track, 7-parameters (position and 4momentum at point P_2)
- Coordinate transformation: $Point(x'y'z') \rightarrow IP(xyz)$
- 7-parameters error matrix is invariant in the transformation

 $\vec{r_c} = Point - IP$ $\vec{P} = \vec{P'}$ $\vec{x} = \vec{x'} + \vec{r_c}$ Ew = Ew'

Validation by $J/\psi \to \Lambda\Lambda$

Solve the Λ mass shift issues when $L_{xy}(Tru) > 10$ cm. ullet

2.4

VertexFitUpgradeAlg gives best mass resolution

Secondary Vertex Fit

<u>×</u>10³

50

40

30

20

10

0 ___10

-5

5

0

Events/0.50 cm

- **Basic requirements**: calculate the flight path of long-lived particles
- Method: Lagrange Multiplier-Based Least Squares Method

$$\chi^{2} = (\alpha - \alpha_{0})^{T} V_{\alpha 0}^{-1} (\alpha - \alpha_{0}) + 2\lambda^{T} (D\delta\alpha + E\delta c\tau + d)$$

$$\alpha = (p_{x}, p_{y}, p_{z}, E, x_{d}, y_{d}, z_{d}, x_{p}, y_{p}, z_{p}) \qquad \vec{x}_{d} - \vec{x}_{p} = \frac{c\tau}{m} \vec{p}$$

×10³

100

80

60

40

20

0 ^L 0

0.2

0.3

0.1

0.6

0.5

0.4

 $\sigma_{L}^{}$ (cm)

0.7

0.8

Events/0.01 cm

$$\vec{p}_{\pi} - \vec{p}_{\pi} - \vec{p}_{\pi}$$

• **Results**: decay length $c\tau$ and updated Λ track pars

20

15

10

 $L_{\overline{\Lambda}}$ (cm)

25

30

18

Summary

- Vertex fit algorithm after three iterations significantly improves the hyperons reconstruction.
- Still some issues remaining:
 - Can't process π^0/γ included fit. $(\Sigma^+ \to p\pi^0, \Xi^0 \to \Lambda \pi^0)$
 - Fit independently, no unified parameters update. $(\Xi^- \rightarrow \Lambda \pi^- \rightarrow p \pi^- \pi^-)$
 - Data/MC discrepancy handling
- More to say IP hypothesis of track reconstruction
 - Track helix type
 - WTrackParameter value setup

• Many valuable insights learned will benefit future collider experiments (STCF ...)

Back up

Wrong Decay Length Reconstruction

For events with Lxy(tru) > 10, about 8% of the events have incorrectly reconstructed decay length, and these events exhibit a mass shift of -1.5 MeV in $M_{p\pi}$ -.

Use the MDC Hits Info

- Preliminary method: when the point is in the MDC ($L_{xy} > 7.885cm$ region):
 - ① There are hits around this point on both sides.
 - (2) There are no hits around this point on both sides.
- The MdcRecHits positions of proton track are used, which can improve the point correct rate.

Preliminary Method of MdcHits Process

B

Find Correct Point | Intersection

- VtxFit of p and $\pi \Rightarrow vx$
- $\{Point1, Point2\} \Rightarrow \{Near Point, Far Point\}$
- Ensure z of Near Point:
 - VFHelix of p and π pivot to vx
 - θ_1 : angle between POCA and Near Point
 - VFHelix rotate θ_1 from POCA to Near Point $\Rightarrow z_1$
- Ensure z of Far Point:
 - VFHelix rotate θ_2 from Near to Far $\Rightarrow z_2$ of p and π •
 - Calculate the pitch of 2 VFHelix, obtain all the candidates for p and π within the MDC range (-129.1, 129.1 cm) :
 - \checkmark **zVec_p:** z_2^p , $z_2^p \pm h^p$, $z_2^p \pm 2h^p$ ✓ **zVec_pi:** $z_2^{\pi}, z_2^{\pi} \pm h^{\pi}, z_2^{\pi} \pm 2h^{\pi}$
 - Loop the two vectors, the combination with the least $|\Delta z|$ will be considered as the z-coordinate of p and π at the far point.

Why consider the multiple solutions of z:

Unable to determine the time order of the near point and far point

 $\Delta Z(Point) = |z_p - z_{\pi^-}| @ Point$

 $\Delta Z(Near) < \Delta(Far) \Rightarrow$ NearPoint is correct Successful rate: 95.4%

Find Correct Point | Separation or Containing

Separation

- VtxFit of p and $\pi \Rightarrow vx$
- Calculate the closest point of the two circles {A, B}
- Ensure z
 - VFHelix of p and π pivot to vx
 - θ : angle between POCA and Point
 - VFHelix rotate θ from POCA to Near Point $\Rightarrow z$

Containing

- Nearest two points (AB or DE)
- Same as separation

A class IntersectionFinding to find the correct point

class IntersectionFinding

public:

static IntersectionFinding* instance();
~IntersectionFinding() {}

void init();

void setTracksInfo(vector<RecMdcKalTrack*> KalTrkVec, vector<RecMdcKal</pre>

// Calculate the IntSecing points for intersect or closest point for se int CalcirIntSecPoint();

void setPointIDMethod(int _PointIDMethod) { PointIDMethod = _PointIDMethod
void setRefPoint(HepPoint3D _RefPoint) { RefPoint = _RefPoint; }
void setHelixType(string _HelixType) { HelixType = _HelixType; }
void IsDebug(bool _debug = false) { debug = _debug; }

```
HepPoint3D getRefPoint() {return RefPoint;}
string getHelixType() {return HelixType;}
```

```
vector<HepPoint3D> getCorrectPointVec() {return CorrectPointVec;}
vector<HepPoint3D> getWrongPointVec() {return WrongPointVec;}
vector<HepPoint3D> getDefaultPointVec() {return DefaultPointVec;}
vector<HepPoint3D> getNearPointVec() { return NearPointVec; }
vector<HepPoint3D> getFarPointVec() { return FarPointVec; }
```

```
HepPoint3D getCorrectPoint( int n ) {return CorrectPointVec[n];}
HepPoint3D getWrongPoint( int n ) {return WrongPointVec[n];}
HepPoint3D getDefaultPoint( int n ) {return DefaultPointVec[n];}
HepPoint3D getNearPoint(int n) { return NearPointVec[n]; }
HepPoint3D getFarPoint(int n) { return FarPointVec[n]; }
vector<double> getFarZPosVec(int n) { return ZposVecFarVec[n]; }
```

```
int getPointFlag() { return PointFlag; }
int getTrksStat() { return TrksStat; }
int getBestZposStat() { return BestZposStat; }
VFHelix getTrkHelixVecOrigin(int n) { return TrkHelixVecOrigin[n]; }
VFHelix getTrkHelixVecInPivot(int n) { return TrkHelixVecInPivot[n]; }
```

A New Vertex Fit Algorithm

Momentum of Λ and Ξ^-

Data/MC Discrepancy

Zoom

Thank you!

缩放 😪 相册 😑 自拍 🗴 拍摄 🗛 取消 🚯

/ 64

31

照相机