

STCF ITKW mTPC

July 23, 2025

Jiajun Tang

University of Science and Technology of China

Outline

Geometry

Digitization & Clustering

Reconstruction correction

Summary

muRGroove on STCF

Geometry

MPGD-based ITK

μ RWELL $\rightarrow \mu$ RGroove

three cylindrical detector layers covering polar angle: $20^{\circ} - 160^{\circ}$

Ar-based gas (Ar:CF₄:CO₂/45:40:15)

Digitization & Clustering

Digitization — Electric field

Digitization

- **†**: Primary ionization
- \checkmark : drift in EM field (T_i) drift time, relative position within groove

(magnet, gas, voltage, velocity, diffusion ...)

sensing signal (Q_i) — electronics response function

wave amplitude, time to peak

Superimposed single-electron waveform \rightarrow Threshold-crossing time

Digitization

Compare with experiment

Single channel signal time

Fired strips charge

Clustering

Pack up digits into clusters

Before:

continuous group of digits(one break point is allowed)

Updated:

two break points are allowed

within 350 ns

signal over threshold (1 fC)

time monotonicity (less than 100 ns per strip)

Rec efficiency(%):

 $(87.42, 95.18, 96.31) \rightarrow (90.50, 97.51, 98.25)$

Reconstruction correction

 ΔZ

Charge center Performance 500 MeV

-0.8

40

-0.6

-0.8

40 50 60

70 80 90 100 110 120

 $\Delta R \phi$

90 100 110 120

 σ_{Z}

no deviation but large resolution

Micro TPC

Drift velocity

$$B \cdot e^{-C(x-D)}$$
³⁰⁰

$$R(t) = A + \frac{E - e}{1 + e^{-(x - E)/F}}$$
²⁵⁰

350

$$R'(t)|_{t=T_x} = 0 \to T_x = E - F \ln \frac{CF}{1 - CF}$$

$$T_{min} = R^{-1}(\frac{1}{2})$$

100

80

$$F(t) = A + \frac{A}{1 + e^{-(x-B)/C}}$$

 $T_{max} = B$ 20

 $\sigma_{R\phi}$

0.7

0.6

large deviation

Source of deviation

Inaccurate estimation of drift time & drift velocity Time advance caused by multiple signals collected by one strip Each step of digitization may bring deviation

Temporary solution

....

- Data (MC) driven method:
- Get a set of correction matrix based on
- different momentum, polar angle, particle type

 \star : reach point is not the center of the strip if N_e original ionization, the T_{drift} is determined by the first one θ

Correction flow

Generated from MC

Standard MC

- 5 types of particles e, μ, π, K, p
- momentum range from 250 MeV to 700 MeV
- covering polar angle from 20° to 160°
- no correction is applied

Correction matrix

compare with MC truth to calculate CorrX & CorrV energy loss is estimated by Q/N

Q/N distribution

Q/N

Q:Cluster charge N:Cluster range

CorrX, CorrV

DeviXoflayer1

DeviXoflayer1

+

И

DeviXoflayer1

X deviation, unit: strip (Layer1)

DeviXoflayer1

DeviXoflayer1

DeviVoflayer1

DeviVoflayer1

μ

DeviVoflayer1

V deviation, unit: strip (Layer1)

DeviVoflayer1

DeviVoflayer1

DeviVoflayer1

High momentum – 700 MeV

note: new geo parameters are implemented to cover polar angle $20^{\circ} \rightarrow 160^{\circ}$

High momentum — 700 MeV

 K^+

Low momentum -250 MeV, 300 MeV

correction will deteriorate at low momentum for K, p

Hybrid construction

Caused by Lorentz angle \rightarrow seldom V strips have signal (about $130^{\circ} \rightarrow 150^{\circ}$) $N_{hits} < 3 \rightarrow$ can not use mTPC, use CC instead

corrections of V strip deviation should be considered separately (still ongoing)

MC based correction achieved some progress

need to reconsider with θ at $130^\circ \rightarrow 150^\circ$

highly rely on correct digitization

Introduced digitization, reconstruction and correction of ITKW

- not good performance at low-p for p & K (or high energy loss tracks)

Looking for your advice

e-mail: mbb0303@mail.ustc.edu.cn

Jiajun Tang

Backup

DeviVoflayer1

Backup

 $\theta = 158^{\circ}$

ClusterRange=2 ClusterRange=3

