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• HL-LHC

• CMS Upgrades 

• Mip Timing Detector

• 4D vertex reconstruction

• Update of the 4D algorithm 

•  Performance study of: 
- vertex time resolution
- reconstruction efficiency
- pileup rejection 
-
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• High-luminosity LHC era (HL-LHC) starting in ~2030
- x3-4 instantaneous luminosity
- up to ~140-200 pileup (PU) interactions (~3x with respect to current situation)
- x10 integrated luminosity

• Crucial  to  isolate  interaction  of  interest  and mitigate  effects  of  PU on object 
reconstruction 

• Current global event reconstruction relies on track-vertex association in space
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HL-LHC 
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• Reconstruction  depends  on  track-vertex 
assignments  that  become  ambiguous  when  track 
resolution is comparable to vertex separation

• Vertex  merging  and  the  incorrect  association  of 
tracks  with  vertices  distorts  the  final  state 
kinematics.

• The efficiencies to correctly identify jets, leptons, 
and photons are affected; every object is degraded!

• Degraded  reconstruction  results  in  loss  of 
sensitivity,  undermining  physics  objectives 
motivating HL-LHC. 

• Challenge: keep current performance during HL-
LHC phase
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Timing  significantly  reduces  the  “effective”  vertex  line 
density—> 200 PU equivalent to current LHC PU (~50 PU)

Experimental Challenges at HL-LHC 

PU ~ 140

PU ~ 30

PU ~ 200
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• New tracker and calorimeters with enhanced granularity and radiation tolerance. 

• High-granularity calorimeters and tracker designed to operate in extreme pileup conditions

• Minimum Ionizing Particle Timing Detector (MTD) proposed for the CMS experiment 
Phase2 upgrade —- for precision timing of minimum ionizing particles (MIPs)
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Upgrade CMS detector to mitigate pileup and radiation damage

Muon System  
• New CSC/DT BE/FE electronics  
• GEM RPC Coverage in 1.5 < |η| < 2.4  
• Muon tagging in 2.4 < |η| < 2.8

Barrel Calorimeter  
• New BE/FE electronics  
• ECAL : lower operating temperature  
• HCAL : New backend electronics 

HGCAL  
• High granularity calorimeter  
• Radiation -tolerant scintillator  
• 3D capability and timing 

MIP Timing detector  
• Coverage |η| < 3.0 
• Barrel LYSO Crystal SiPM 
• Endcap : Si sensors LGAD

New Tracker  
• Radiation tolerant, highly granular  
• Coverage |η| < 3.8
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Time-tagged  charged  tracks 
enable

• time  compatibility  check  for 
track-vertex association

• Enhanced  discrimination  of 
vertices  in  space  and  time 
("4D vertexing")
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Why do we need a MIP Timing Detector in CMS?
• The MTD will provide timing information for MIPs with a 30-40 ps resolution

• This precision is significantly smaller than the O(200 ps) time spread of proton-
proton collisions at the HL-LHC

Vertices overlap in position, 
but separate in time

CMS MTD Techinal Design Report

https://cds.cern.ch/record/2667167
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• Thin layer between tracker and calorimeters

• Almost hermetic (|η|<3)

• Different regions adopt different technologies, suited to the level of radiation dose:

- Barrel Timing Layer (BTL)—arrays of LYSO crystal bars readout by SiPMs

- Endcap Timing Layer (ETL)—Low Gain Avalanche Detector (LGAD) module

�7

MIP Timing Detector 

• LYSO Bars + SiPM readout 

• |η| < 1.45 & pT > 0.7 GeV 

• Active area ~ 38 m2

• Si with internal gain 
(LGADs)


• 1.6< |η| < 3.0

• Active area ~ 14 m2

BTL

ETL
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• Local reconstruction:

- In BTL: single crystal measurements

- tav = (tL + tR)/2 (left and right SiPMs)

- In ETL: pixel measurement

• Topological  clustering  of  adjacent  MTD 
hits:

- In  BTL:  frequent  multiple  hits, 
especially at high η

- In ETL: mostly single-hit clusters

- Cluster  time:  weighted  average  of 
single-hit times
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Track Reconstruction With Timing

CMS MTD Techinal Design Report

•  Propagation of tracker tracks to MTD and matching with clusters

- Spatial matching based on χ2 of track extrapolation

- Time compatibility with beamspot constraint

- To suppress background

https://cds.cern.ch/record/2667167
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• Tracker + MTD track:

- Re-fit track parameters including additional spatial measurement

- Compute path length

• Given path length and momentum, velocity depends on mass hypothesis, a-priori unknown

• Propagate the track to its point of closest approach to beamline under various mass 
hypotheses (π, K, p)

- Dedicated to primary vertex reconstruction

- Similar approach may be used for secondary vertices exploiting their known position
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tvtx = tMTD - TOF (pion, K, proton )

MTD

Beam line
tvtx

tMTD

Track Reconstruction With Timing
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• Total track time uncertainty

σ(tvtx) = σ(tMTD) ⊕ σ(tToF) ⊕ Δ(TOFp – TOFπ) 

• σ(tToF) propagates the uncertainty on particle’s velocity derived from the 
reconstructed track momentum, that is particle hypothesis dependent 

• CMS-DP/2024-048 studies shows that σ(tToF) has negligible impact 
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Track Time Uncertainty

σ(tMTD) : estimated MTD time 
uncertainty 
 σ(tTOF) : TOF uncertainty 
 Δ ( T O Fp – T O Fπ ) : i n fl a t e d 
uncertainty, due to π approximation 

CMS-DP/2024-048

https://cds.cern.ch/record/2904361
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4D vertex reconstruction and particle identification (PID) go hand in hand 

• Measure  track  time  @  MTD  and  momentum,  velocity  depends  on  the  mass 
hypothesis 

• So far vertex reconstruction - legacy 4D - in 2 steps 
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4D Vertex Reconstruction 

•Cluster vertex with pion hypotheses 
taking inflated uncertainties 
σ(tvtx) = σ(tMTD) ⊕ σ(tTOF)⊕ Δ(TOFp 
– TOFπ) 

• Calculate vertex time and PID 

•Calculate vertex using updated track 
times, and remove the inflated 
uncertainties  

σ(tvtx) = σ(tMTD) ⊕ σ(tTOF)

• Calculate vertex time and PID 

1st step 2nd step 
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The legacy 4D algorithm is sub-optimal: 

• CPU-time  consuming:  in  1st  step,  inflated  uncertainty  dominates  over  MTD 
uncertainty at low momenta, 
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The updated 4D algorithm  

Vertex Reconstruction —> 
10% of RECO  time 

The  updated  4D  algorithm  [CMS-DP/
2024-085]  replaces  the  1st  step  of  legacy  4D 
with 3D vertices: 

• Possible thanks to time computation available 
for 3D vertices as well (3Dt)

• Reduce the vertex reconstruction CPU-time 
by 30% without loss in performance 

CMS Offline Computing-Public Results

https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults
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In legacy 4D: compute time using only the mass hypothesis assigned after PID with a simple 
weighted average 

New: time computed with a deterministic annealing (DA) time algorithm using all 3 mass 
hypotheses, minimizing the cost function:
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tvtx =
Σi

1
σ2

t,i
. ti

Σi
1

σ2
t,i

F = − T ∑
tracks,i

w0,i log (Z0 + απe
− (ti(π) − tv)2

2σ2ti + αKe
− (ti(K) − tv)2

2σ2ti + αpe
− (ti(p) − tv)2

2σ2ti )

• This algorithm can be applied to a reconstructed vertex regardless of the use of time in its 
clustering and fitting:

- 3Dt vertex with the DA time calculation

-  updated 4D with the DA time calculation in 2nd step 

Vertex Time  

track weight from adaptive vertex fit 

track time for 𝛑, K, p

track time uncertainty for 𝛑, K, p

a prior probability for 𝛑, K, p 
(0.7, 0.2, 0.1)
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• The vertex time resolution and pull for signal vertices, the distributions are fitted with a 
double Gaussian: the parameters shown refer to the narrowest one 

• The 3Dt and updated 4D algorithms yield notable improvements in both time resolution 
and pull, compared to the legacy 4D vertexing approach

• The legacy 4D method exhibits a systematic negative bias, primarily due to incorrect mass 
hypothesis assignments (such as kaon or proton); this is effectively corrected in the updated 
algorithms.

•
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The number of reconstructed vertices as a function of the number of PU vertices for real and fake 
vertices 

• Classification based on matching to MC truth - both true tracks and vertices (details in backup) 

• The 3Dt reconstructs more real vertices, but also more fakes 

• The updated 4D algorithm shows a higher number of vertices than the legacy, with a 
performance in between the 4D legacy and the 3Dt algorithms 
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    Error bars indicate the RMS of the distribution, 
not the uncertainty on the mean
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Jyoti Babbar (CMS)Jyoti Babbar (CMS)

• Distance between pairs of reco vertices: the updated 4D algorithm shows more real-real vertex 
pairs close in z than legacy 4D, but also more fakes 

• The 3Dt algorithm is not designed to reconstruct vertices with separation less than ~0.3 mm

• The improvement in the new algorithm is visible especially for real vertex pairs with Δz close 
to 0

• Advantage in the use of timing: vertices that overlap in space can be separated in time 

�16

0 0.1 0.2 0.3 0.4 0.5
 z (fake, fake)| [cm]Δ|

0

100

200

300

400

Ve
rte

x 
pa

irs

4D
3Dt
4DLegacy

Phase-2

 + 200 PUttCMS
Simulation Preliminary

0 0.1 0.2 0.3 0.4 0.5
 z (real, real)| [cm]Δ|

0

10

20

30

40

50
310×

Ve
rte

x 
pa

irs

4D
3Dt
4DLegacy

Phase-2

 + 200 PUttCMS
Simulation Preliminary

Distance in Z

 

C
M

S-
D

P/
20

24
-0

85

https://cds.cern.ch/record/2914583?ln=en
https://cds.cern.ch/record/2914583?ln=en


Jyoti Babbar (CMS)Jyoti Babbar (CMS)

• Compare vertex algorithms in terms of PU rejection: 
• Essential for accurate object reconstruction under 
high pileup conditions at the HL-LHC
• primary goal of MTD 

• Performance is monitored using observables derived 
from both tracks and jets

• Tracks  associated  to  a  reconstructed  vertex  are 
classified based on MC truth matching as: 

- Track from primary vertex

- Track from secondary vertex

- PU track

- Fake track, not matched to any true particle 
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Pileup Contamination

• Jets are built by clustering reconstructed charged tracks originating from the same vertex

•The relative contribution of PU to jet-based quantities is estimated by clustering jets without the 
PU tracks and recomputing the observables 
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Impact of PU on track multiplicity, jet multiplicity and sum of pT
2 of jets

• The 4D vertexing algorithms  show a general improvement, reducing PU    
contamination by approximately 10–15% compared to the 3Dt approach

• In contrast, some variables—such as the sum of jet pT
2 , which is used in 

vertex sorting—are less sensitive to the vertex reconstruction algorithm
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• Precision timing from the MTD is essential for mitigating pileup (PU) at the HL-LHC.

• A set of tools has been developed for evaluating the performance of different vertex 
reconstruction  algorithms in terms of:
- Vertex time resolution

- Number of reconstructed true and fake vertices

-  PU rejection 

• These tools provide a benchmark for future algorithm development and exploration of 
advanced techniques

• The optimization of the 4D vertex reconstruction is presented

• 4D vertexing enables temporal separation of spatially overlapping 
vertices, enhancing pileup suppression

�19

Conclusions 



Backup 
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• Timing significantly reduces the “effective” vertex line density

- 200 PU equivalent to current LHC PU (~50 PU)
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PU ~ 200

PU ~ 140

PU ~ 30

Precision Timing at CMS in HL-LHC

CMS MTD Techinal Design Report

https://cds.cern.ch/record/2667167

