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Motivation: Particle identification

= PID is essential for high energy physics experiments

® Suppressing combinatorics
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® Distinguishing between same topology final-states

® Adding valuable additional information for flavor tagging of jets
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PID In next generation experiments

CEPC 4t Concept IDEA for FCC-ee

. Advantage: Cost efficient, high density HTS Solenoid Magnet (?T I 2T)
Scint Glass ) . Between HCAL & ECAL, or inside HCAL
PFA HCAL Challenges: Light yield, transparency,
radiation hardness, massive production

Advantage: the HCAL absorbers act as part * asilicon pixel vertex detector
of the magnet return yoke. |

» a large-volume extremely- Preshower

light drift chamber

Challenges: thin enough not to affect the jet
resolution (e.g. BMR); stability.

DCH Rout = 200 cm
7 Transverse Crystal bar ECAL

silicon micro-strip detectors

Advantage: better 79y reconstruction DCHRin = 35cm

¢ a thin low-mass

Challenges: minimum number of readout superconducting solenoid coi
channels; compatible with PFA calorimeter;

maintain good jet resolution.

« surrounded by a layer of ;‘;1’
s
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D
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» a preshower detector based

on p-WELL technology b = 35
A Drift chamber .
that is optimized for PID * adual read-out calorimeter
Advantage: Work at high luminosity Z runs « muon chambers inside the Cal Rout= 450 cm
Challenges: sufficient PID power; thin enough magnet return yoke, based
not to affect the moment resolution. Need a 3
Muon+Yoke Si Tracker Si Vertex supplementary ToF detector on p-WELL technology Yoke 100 cm
Magnet z =+ 300 cm

- In future high-energy and high-intensity frontier experiments (CEPC, FCC-ee, STCF), the
requirements for PID are stringent

- In high-energy frontier case, flavor physics studies in high luminosity Z-pole run require high
performance PID up to tens of GeV/c. Traditional techniques cannot meet such requirement

- Among the PID techniques, cluster counting (dN/dx) in drift chamber represents a breakthrough
and is proposed in both CEPC and FCC-ee



lonization measurement in drift chamber
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lonization measurement in drift chamber

dE/dx (traditional method):

+ Method: Total energy loss measurement by
iIntegrating the waveform

* Characteristics:
* Landau distributed =» Loss ~30% statistics
JEEE A SR R due to truncation

SO e o * Large fluctuation from many sources




dE/dx (traditional method):
* Method: Total energy loss measurement by
Integrating the waveform
* Characteristics:
* Landau distributed =» Loss ~30% statistics due
to truncation
* Large fluctuation from many sources
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High bandwidth & sampling rate electronics

4 Primary electrons (MC truth)

— Secondary stectrons (MC truth dN/dx or cluster counting (“ideal” method):

* Method: Number of primary ionization cluster
N \ measurement (require fast electronics)
\j * Characteristics:
i \\, \J\(M * Poisson distributed

w

Amplitude (a.u.)

* Small fluctuation (resolution potentially
e 00 improved by a factor of 2) !
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dN/dx vs. dE/dx
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* Particle separation power: o gEN/ﬁ'Xt””tLh
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* Typical K/t separation power: ;’% af-
* dE/dx: > 20 up to 2...20 GeV/c °
* dN/dx: > 30 up to 2...20 GeV/c ¥ o
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dN/dx has much better PID power than dE/dx
dN/dx is a breakthrough in PID :



dN/dx reconstruction

Orange lines: Primary electrons (MC truth)
Green lines: Secondary electrons (MC truth)
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As the name “cluster counting” implies,
dN/dx reconstruction Is to determine the
number of primary electrons in the waveform



dN/dx reconstruction

T sepr R

AR . 2-step algorithm
1_ * Peak finding: find “electron” signals
i | | | | * By detecting peaks from both
primary and secondary electrons
4] Primary electrons (MC truth)

—— Secondary electrons (MC truth)

Ste 2 o Detected electrons . . - o 7] .
| P % Removed electrons * Clusterization: find “cluster” signals

* By removing secondary electrons
from the detected peaks in step 1

Amplitude (a.u.)
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dN/dx reconstruction iIs challenging

il
p! e:'p * Highly piled-up = Difficult
Color code: cluster ID for an efficient peak-finding

* Noisy = Filtering could
(significantly) lose efficiency

* Overlapping between clusters
=» Difficult for clusterization

Cluster 11 & 12 |~
are overlapped

Solution: Deep learning
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Software package and data samples

- . Test b t CERN
= Simulation package oSt beam 4

m Garfield++-based simulation + data-driven digitization

—

AR
= Data samples S
= Simulated samples EEE et -
m 0-20 GeV/c pions and kaons iy oo 2 ‘
. .
Experlmental Samples From INFN group led by Franco Grancagnolo and
m 180 GeV/c muons from CERN/H8 beam Nicola De Filippis
Simulation package - o sy Tuned MC is comparable to data
[ — ' ?g [ |z;€£6‘§:1ﬁn”i§|__j E Simulation = a8 : Test beam
__S_ii‘nulation ______ “_:“ ﬂ © =0 w0 - & R
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LSTM @ﬁ ©® © LSTM-based peak finding:

B f * Can efficiently handle time-sequence
S & o] | = Waveform slices as the LSTM input
A %[g [ A * Binary classification of signals and
| VA noises
&) ) &)
DGCNN DGCNN-based clusterization:

* Incorporate local information to learn
global properties
* Detected timings from the peak-
| finding as the DGCNN input
Dynamically connected o Binary node classification of primary
Graph by k-NN
and secondary electrons

Nuclear Science and Techniques 36, 113 (2025) e



Peak finding results

— B/5 peaks detected
Primary electrons (MC truth)
4 —— Secondary electrons (MC truth)
e Detected electrons

Table 2. The purity and efficiency comparison between LSTM-based
ML algorithm and traditional D2 algorithm for peak-finding.

Purity Efficiency
LSTM algorithm 0.8986  0.8820
D2 algorithm 0.8986 0.6827

Amplitude (a.u.)
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Index

— 2/5 Peaks detected Primary electrons (MC truth)
4 —— Secondary electrons (MC truth)
o Detected electrons

33 Trad ®m The LSTM-based model is more powerful
5| . than the traditional derivative-based
s \JN algorithm, especially for the pileup recovery
< 14

0_
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Index 14
Traditional peak-finding: second derivative



Clusterization results

— 1 fake peak detected )
Primary electrons (MC truth)
4 —— Secondary electrons (MC truth) ROC Curve
o Detected primary electrons 104 — mL
~ 31 —— Trad
F ! [Jb ML
§ 5] 0.8
2 2
< 4] © 061
01 a;:- 0.4
100 200 300 400 500 600 a
Index
0.2
— 4 fake peaks detected :
Primary electrons (MC truth)
+ ' —— Secondary electrons (MC truth) 0.0
e Detected primary electrons 0_'0 0_'2 0_'4 0.|6 O.IB l.lﬂ
3 False positive rate
3 Trad.
32l » .
%2 \! m The DGCNN-based model is more powerful than
£, \J\{“\F the traditional peak-merge algorithm, as it can
‘ “ remove the secondary electrons more accurate
0_
100 200 300 ndex 400 500 600 15

Traditional clusterization: adjacent-peak merge



PID performances with supervised models

Reconstructed # of clusters distributions

Very good Gaussians = Efficient secondary
electron removal

For 1m track length, dN/dx resolution < 3%,
typical ~5% for dE/dx

K/Tt separation power vs. momentum

1m track length
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~10% improvement for ML (equivalent to
a detector with 20% larger radius for trad.
algorithm) 0



Alg. 2: Transfer learning for real data

= Challenges for real data
= Imperfect simulation

= Incomplete labels in real data

Optimal Transport

T (X)

X

Kantorovich
(Economic
Nobelist 1975)

Dataset

. ++ Class 1

s © O Class 2

Q v:l-b Samples x{

o | “O: Samplesx!

J —— Classifier onx}

T’Tﬂ ()

Domain adaptation

Optimal transport

L 40 SamplesT, (x)
¢ O Samplesx!

= Solution: Domain adaptation

® Transfer knowledge between simulation and
real data via optimal transport

Classification on transported samples

+ 0O Samples T, (x§)
& G Samples x!
— Classifier on T, (x2)

Figures from Flamary's slides

Align data/MC samples with Optimal Transport
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Semi-supervised domain adaptation

Loss for labeled samples * Based on Deep-JDOT (1803.10081)

in source domain

¥

min ZLs(yf-f(y(xf))) ;i L (v s y(x”)))Jrr;}Eigirsj (allg(xf)—s(x})llz+1tLt('yf.f (s(x}))))‘

ij
/ \
!

/ -f

Cost of feature Cost of ‘label’
Loss for labeled differences between differences between
samples in target source and target source and target
domain (THIS WORK) : Y J

Cost of joint feature-label
distribution for OT

Computer Physics Communication 300, 109208
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Model validation by pseudo data
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(
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fake rate)
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Numeric experiment with pseudo data in 2 domains

(simulation domain & data domain)

Model AUC | pAUC (FPR<0.1)

Ideal 0.926 0.812

Baseline 0.878 0.749 D

Unsupervised DA 0.895 0.769

Semi-supervised DA 0.912 0.793 )
" Note:

m |deal = Supervised model in data domain

m  Baseline = Supervised model in sim. domain

m  Unsupervised DA = Baseline + OT

m  Semi-supervised DA = Baseline + OT + semi-

supervised setup
® The OT and the semi-supervised loss improve the

results, and the performance of the semi-supervised
DA model is very close to the ideal model 19
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Peak finding for test beam data

Derivative Semi-DeeplDOT

Can find many fake
peaks near the valley

Single-waveform results between I I

derivative alg. and DL alg. Note: Require
similar efficiency
o o for both cases

DL algorithm is more powerful to discriminate signals and noises
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dN/dx is the breaking through PID technique and its reconstruction is challenging. Two
machine learning algorithms are developed for dN/dx reconstruction.

The supervised model has 10% improvement on K/pi separation w.r.t. traditional algorithm.
The situation could be similar for the semi-supervised domain adaptation model.

When studied with the full-simulation samples using a supervised model, the PID
performance achieves < 3% K/pi resolution and ~3c K/pi separation for 1m track length.

When studied with the test beam samples, the semi-supervised domain adaptation model
successfully transfer information from simulation and achieve stable performances.
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Backup



Drift chamber with PID capability

The CEPC 4t concept

Sci Advantage: Cost efficient, high density ol oie Vas
cint Glass Betwee AL & AL, o de A . . .
LI | Challenges: Light yield, transparency, A drift chamber with cluster counting
radiation hardness, massive production Advantage: the HCAL absorbers act as part .
of the magnet retum yoke, (dN/dx) is one of the gaseous detector
Challenges: thi h not to affect the jet .
Y] S resolution (e.g. Igl\jg;;lgtat?iﬁty.o e el Optl ons
— Key parameters:
,;\:\ar:::‘age:-bet_te-rnoly reconstruction o FU” |eng th 5800 mm
ges: minimum number of readout
channels; compatible with PFA calorimeter; ° Barre| Coverage- |Cose| < O 85
maintain good jet resolution. . ) '
* Radius: 600 — 1800 mm
A Drift chamber * Support: 8x8 carbon fiber frame

that is optimized for PID
* Endcap: 20 mm Al plate
Advantage: Work at high luminosity Z runs

Challenges: sufficient PID power; thin enough * GaS mIXture: 90/10 He/IC4H10

not to affect the moment resolution. Need a
Muon+Yoke Si Tracker Si Vertex supplementary ToF detector
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Challenges of dN/dx measurement

Orange lines: Primary electrons (MC truth)

Green lines: Secondary electrons (MC truth)

N w
| |

Amplitude (a.u.)
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pileup

noise

~Ns risetime

i

100

200

300

Index

400

500

600

Single pulse risetime ~ns, require fast electronics
* Bandwidth > 1 GHz
* Gain > 10
* Sampling rate > 1.5 GS/s
* Bit resolution > 12 bit

Signals are superimposed with noises and are
heavily piled-up in some regions, require
sophisticated reconstruction algorithm
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Traditional peak finding

pileup signals

o T e e L=t primar s W it
| \ - : :fectc)zdaryflectrons (MC truth)
| - - 2 — Slerion:r(liveii:;ive
15 1 - -
1 =" 0.6 -
! =T U
210 I S 04
] I H ¢ '
g I | § Some noises can
: ' g - ™1 also pass the
! | 00 threshold
> i i— - L —0.2
T l T = = — T '
109 400 T = — e
L e i SR —0.4
I ~~~~~ T T T T
/ 300 320 340 360 380 400
Index
L,
; eeee « Derivative-based peak finding
. L * Take first and secondary derivatives
Only 1 out of 3 * Require threshold passing
: signals is detected * Challenges
| * Noises can pollute the signal
| ] * Signals are highly piled up
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Amplitude (a.u.)

2.0 A

Traditional clusterization

W Intra-cluster At

2000 7 Inter-cluster At

1750 A
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Color code: cluster ID 3 %] Difficult to set a cut to
& 10001 discriminate electrons from
750 1 intra and inter clusters

250 A

T T T T T T T T
0 25 50 75 100 125 150 175 200
Time [ns]

* Timing-based clusterization
* Merge adjacent peaks

T
100

T T T T
200 300 400 500

Cluster 11 & 12 * Challenges
are overlapped * Electrons from different clusters can overlap
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Additional plots for domain adaptation

3.01
® Signal Candidates
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Figure 1: An example of simulated waveform. The blue histogram is the wave-
form. The red solid circles are the signal peaks selected by the CWT algorithm.
The blue solid triangles are the noise peaks selected by requiring the 3 RMS
requirement. The orange lines indicate the electron signal times from MC truth
information.
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Figure 4: Waveform examples from the source sample (a) and the target sample
(b). The source waveforms are generated with a noise level of 10% and a pulse
risetime of 2 ns, while the target waveforms with a noise level of 20% and a
pulse risetime of 4 ns.
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