

GNN application in drift chamber of BESIII/STCF

Xiaoqian Jia¹, **Xiaoshuai Qin**¹, Teng Li¹, Xiaoqian Hu¹, Qidong Zhou¹, Shuangbing Song¹, Xingtao Huang¹, Xueyao Zhang¹, Yao Zhang², Ye Yuan²

¹Shandong University

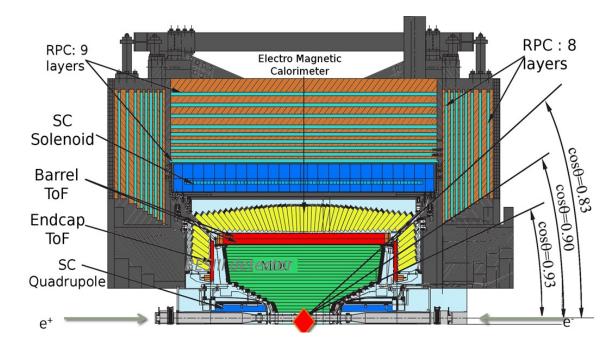
²IHEP

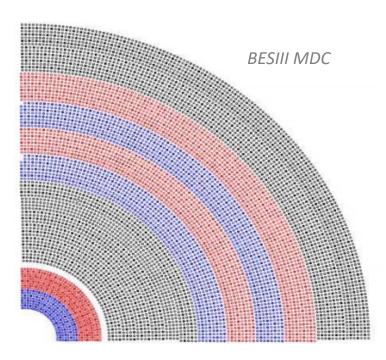
2nd workshop on Tracking in Particle Physics Experiments

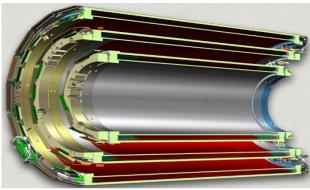
2025-07-22

BESIII tracking system

- ◆ Beijing electron-positron collider (BEPCII)
 - Peak luminosity : $10^{33} cm^{-2}s^{-1}$
 - **CMS**: 2.0 4.95(5.6) GeV, *τ*-charm region
- ◆Main Drift Chamber (MDC) at BESIII
 - 43 sense wire layers
 - 5 axial wire super-layers, 6 stereo wire super-layers
 - dE/dx resolution : 6%
 - Momentum resolution : 0.5%@1GeV/c



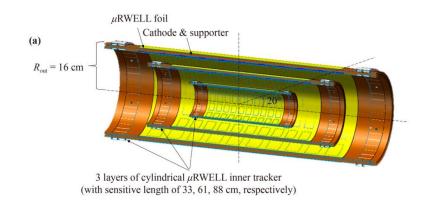


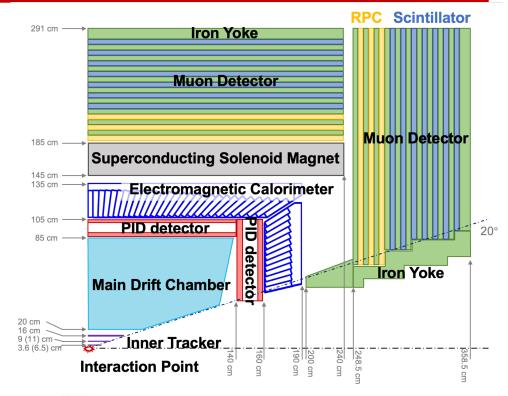


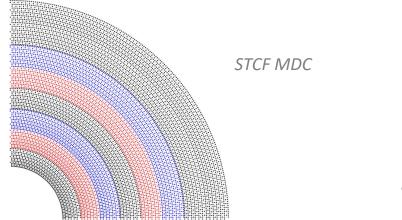
CGEM inner tracker

STCF tracking system

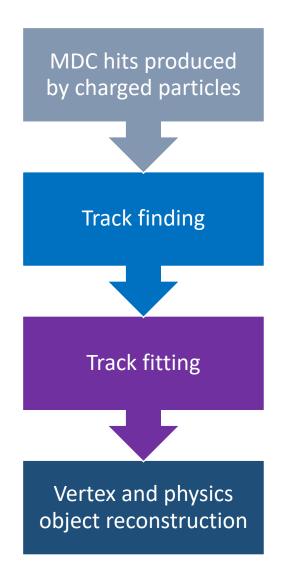
- ◆Super Tau-Charm Facility (STCF)
 - High Luminosity: $> 0.5 \times 10^{35}$ cm⁻² s⁻¹@4GeV
 - CMS: 2.0 7 GeV
- ◆Main Drift Chamber (MDC) at STCF
 - 48 sense wire layers
 - 4 axial wire super-layers,4 stereo wire super-layers
 - dE/dx resolution : ~6%
 - Momentum resolution : 0.5%@1GeV/c
- ◆Inner tracker
 - ITK: μRWELL, CMOS MAPS



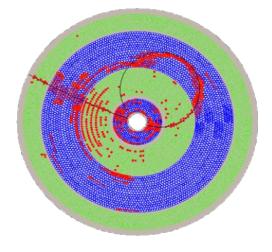




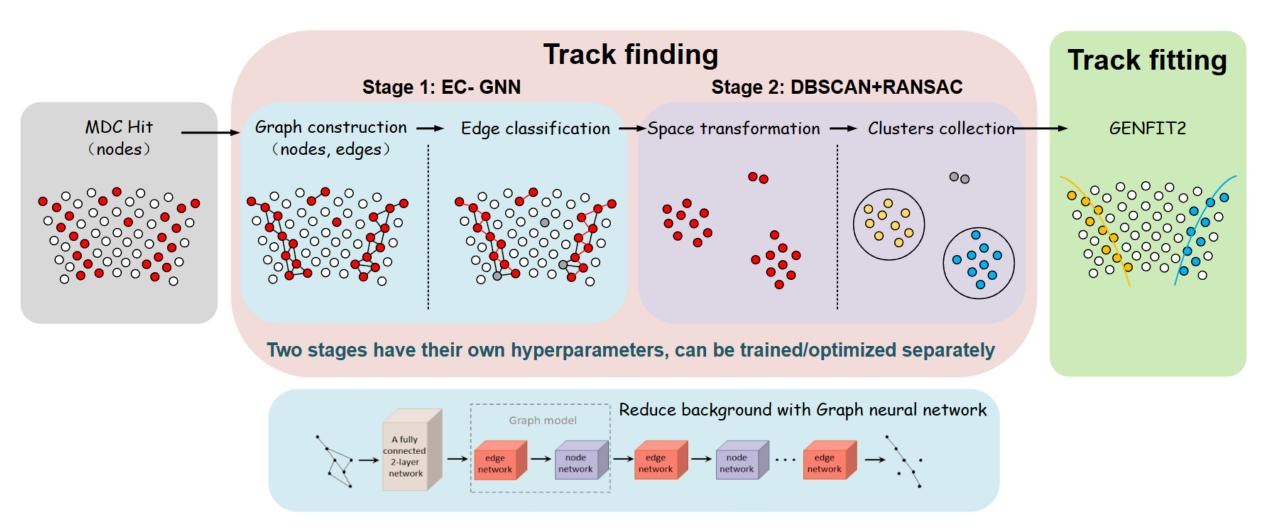
Traditional tracking in drift chamber



- ◆Build candidate tracks and perform hits assignment
 - Global approach : Hough Transform (HOUGH)
 - Local approach :
 - Template Matching (PAT)
 - Track Segment Finding (TSF)
 - Combinatorial Kalman Filter (CKF)
- Estimate the track parameters
 - Global fit : Least Square Method, Runge-Kutta Method
 - Recursive fit : Kalman filter

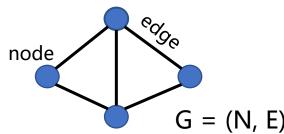


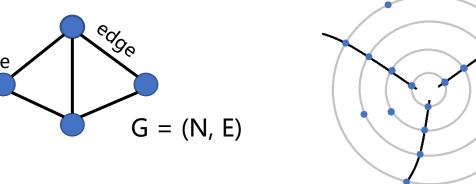
Methodology: GNN based tracking pipeline

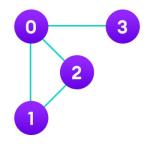


Graph representation

- ◆A type of neural network that are specifically designed to operate on graph-structured data
- ◆Graph elements: nodes, edges
- ◆From graph to track
 - nodes → hits
 - edges → track segments
- ◆ The storage structure of graphs
 - Adjacency matrix √
 - Adjacency table
 - Orthogonal list
 - Adjacency multiple table
 - Edge set array
 -







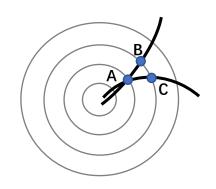
	0	1	2	3
0	0	1	1	1
1	1	0	1	0
2	1	1	0	0
3	1	0	0	0

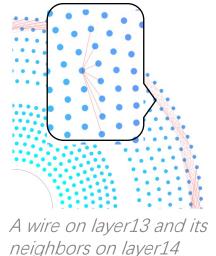
Graph construction at BESIII

To reduce the number of fake edges during graph construction

Pattern Map based on MC simulation at BESIII

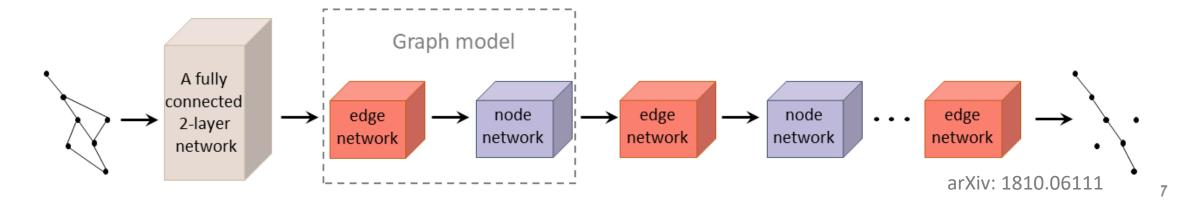
- Definition of valid neighbors
 - Hits on the same layer
 - Two adjacent sense wires on the left and right
 - Hits on the next layer
 - The collection of sense wires that could potentially represent two successive hits on a track
 - To reduce the size of the graphs, the Pattern Map is further reduced based on a probability cut (>1%)
- ◆ Edge assignment based on Pattern Map
 - Hit with its neighbors on the same layer and next layer
 - Hit with its neighbors' neighbors on one layer apart
 - Edge label: two hits of this edge belongs to same track or not.
- Graph representation
 - Node features (raw time, position coordinates r, φ of the sense wires), adjacency matrices, edge labels



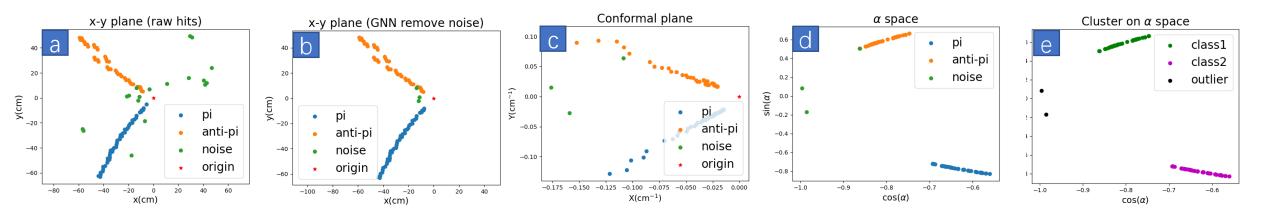


GNN edge classifier based on PyTorch

- ◆Input network
 - Node features embedded in latent space
- Graph model
 - Edge network computes weights for edges using the features of the start and end nodes
 - Node network computes new node features using the edge weight aggregated features s of the connected nodes and the nodes' current features
 - MLPs
 - 8 graph iterations
 - Strengthen important connections and weaken useless or spurious ones



Clustering based on DBSCAN

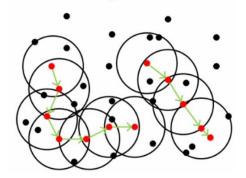


◆Transform to Conformal plane

$$X = \frac{2x}{x^2 + y^2} Y = \frac{2y}{X^2 + y^2}$$

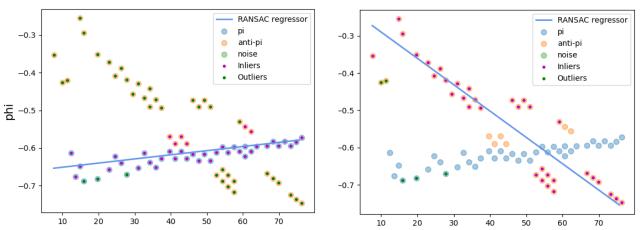
- Circle passing the origin
- transform into a straight line
- Transform to 'α' parameter plane
 - Hits connected in the X-Y plane in a straight line
 - α as the angle between the straight line and X axis
 - The parameter space as cosα and sinα

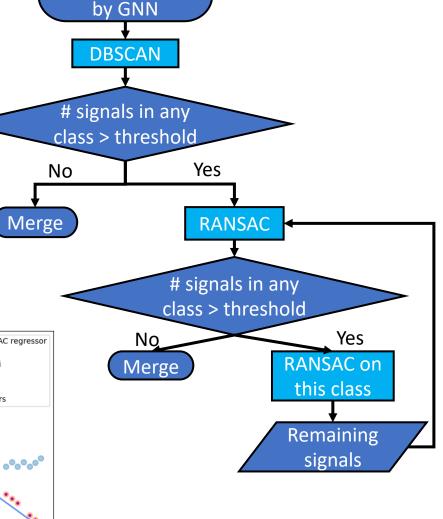
- DBSCAN clustering in 'α'parameter plane
 - Density-Based Spatial Clustering of Application with Noise
 - Hits in a cluster are considered to be in the same track



Clustering salvage algorithm RANSAC

- ◆Random sample consensus (RANCAS)
 - Estimate a mathematical model from the data that contains outliers
 - Its good robustness to noise and outliers
 - Model can be specified
- ◆RANCAS is triggered by the events when DBSCAN fails
 - Polar coordinate space
 - linear model
 - Inliers → a track , outliers → other tracks
 - Stop condition: outliers < threshold</p>





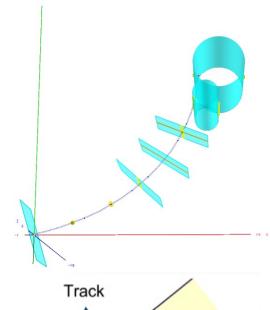
Signals selected

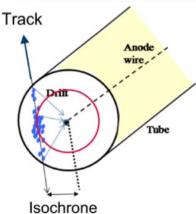
Track fitting

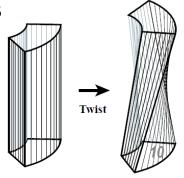
◆Genfit2

- A Generic Track-Fitting Toolkit
- Experiment-independent framework
- PANDA, Belle II, FOPI and other experiments
- Deterministic annealing filter (DAF) to resolving the left-right ambiguities of wire measurements
- ◆Configuration: Detector geometry and materials; TGeoManager
- ◆Input:
 - Signal wire position, initial values of position and momentum
 - particle hypothesis for e, μ, π, k, p
- ◆Fitting procedure:
 - Start 1st try: drift distance roughly estimated from TDC \ ADC of sense wires
 - Iteration to update information of drift distance, left-right assignment, hit position on z direction and entrancing angle in the cell et al.

$$t_{\text{drift}} = t_{\text{TDC}} - t_{\text{EST}} - t_{\text{flight}} - t_{\text{wp}} - t_{\text{elec}}$$



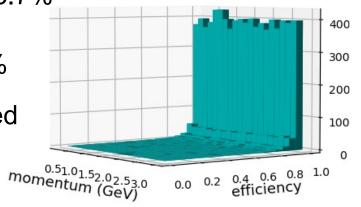


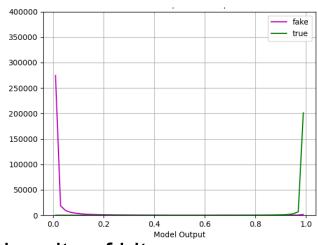


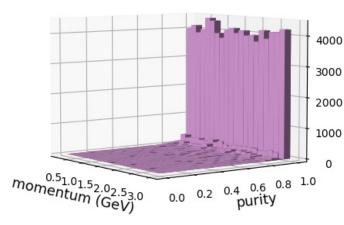
Performance of filtering noise at BESIII

- ◆Datase
 - Single-particle $(e^{\pm}, \mu^{\pm}, \pi^{\pm}, K^{\pm}, p/\bar{p})$ MC sample
 - 0.2 GeV/c < p < 3.0 GeV/c
 - Mixed with BESIII random trigger data as background (~45% hits)
 - Train: Validation: Test = 4: 1: 1
- ◆Hit selection performance
 - The preliminary results show that GNN provides high efficiency and purity of hits selection

- Hit selection Purity : $\frac{N_{signal}^{predicted}}{N_{all}^{predicted}} 96.5\%$
- Efficiency and purity can be balanced by adjusting the model parameter

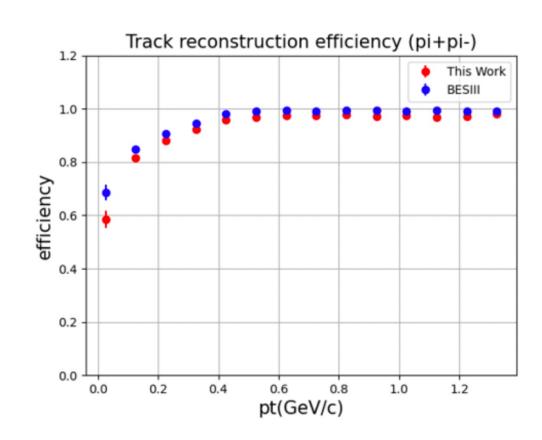


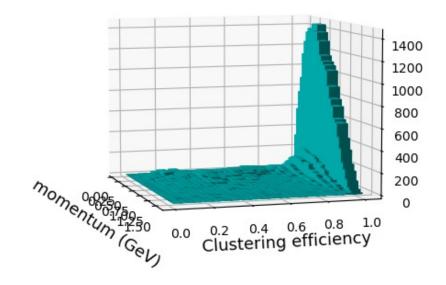


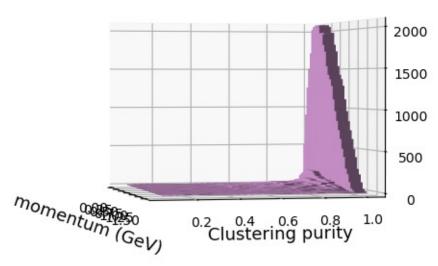


Preliminary tracking performance at BESIII

- ◆Particle reconstructed performance
 - J/ $\psi \rightarrow \rho^0 \pi^0 \rightarrow \gamma \gamma \pi^+ \pi^-$ from MC simulation
 - track eff = $\frac{N_{\text{rec tracks}}}{N_{\text{total tracks}}}$

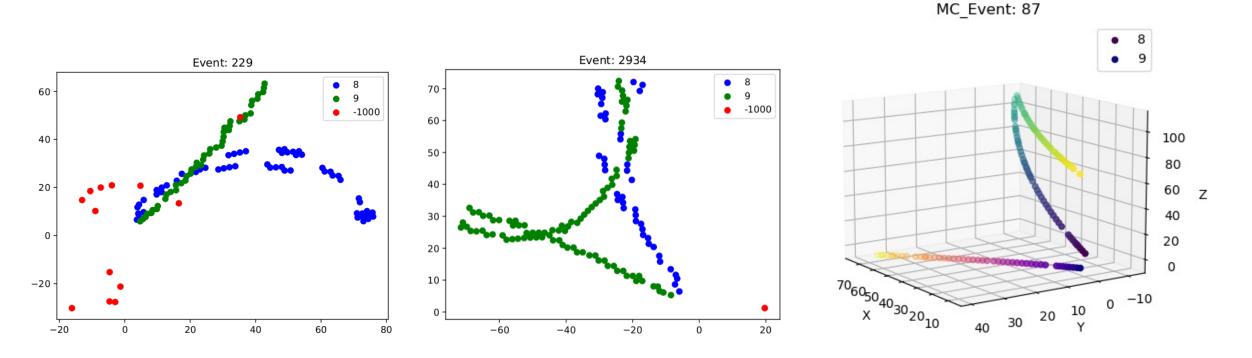






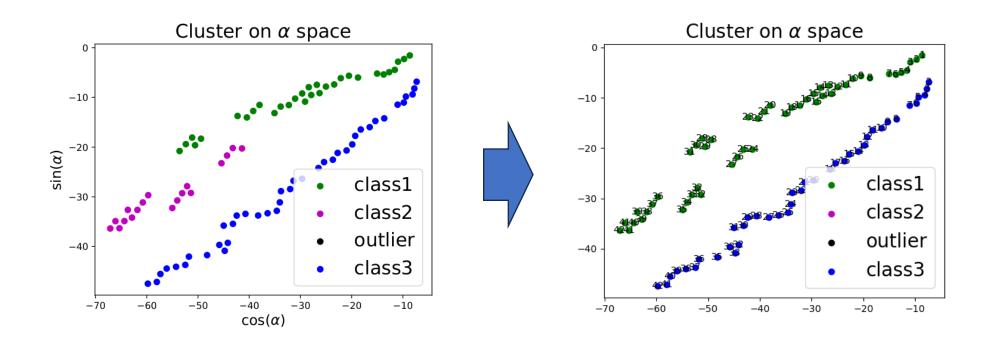
Sources of efficiency loss

- Efficiency loss during track finding(clustering):
 - multi-circular, decays,
 - interaction with detector boundary/material, scattering
 - 2D crossing tracks or too close to each other



Further modification of track finding

- Since z position of hits is unknown, 2D information has large deviation for stereo wires
- ◆Breaking into parts especially for tracks with large polar angle
- ◆Re-combination at super layers level



Z regression and 3D clustering

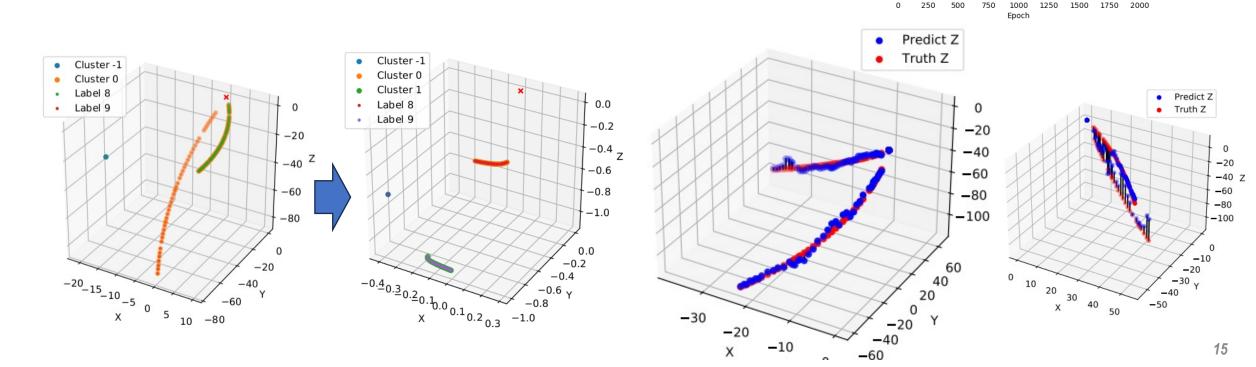
Learning curve

20

SS 15

— Training loss

- ◆GNN regression for z coordinate prediction
 - structure similar as edge classification GNN
 - Lost function:
 - averaged distance between predicted and real position
- Clustering:
 - 3D parameter space: $sin\alpha$, $cos\alpha$, z/r



Potential of 3D clustering

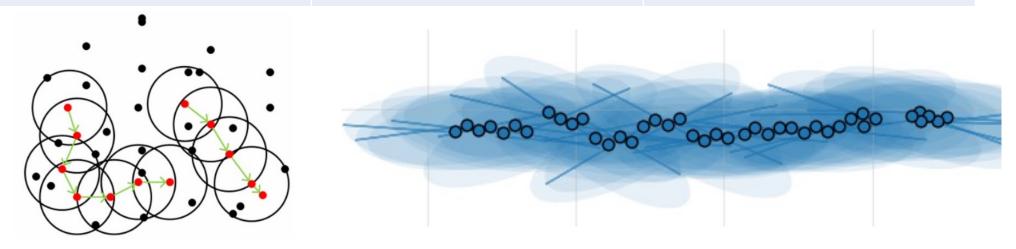
- ◆Parameter space clustering is better than original coordinate space.
- ◆Potential track finding efficiency can reach 97.5% via 3d parameter space clustering
- ◆Good event definition: #hits per track is between 5 and 50, might get rid of circular and large angle scattering

D+R	2D		3D				
	wire XY	Truth XY good event	PredZ wire XY good event	TruthZ wire XY good event	Truth XYZ good event	Truth parameter space	Truth parameter space good event
Efficiency (%)	97.3	98.3	98.1	97.9	98.1	98.2	98.3
Purity (%)	96.8	97.6	96.1	96.7	98.0	99.1	99.2
Finding Success rate (%)	83.3	90.2	71.6	84.3	91.8	92.0	97.5

DBSCAN using elliptical neighborhood

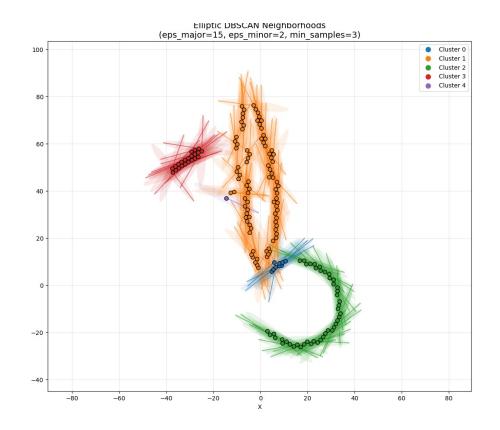
- Circular neighborhood is replaced with an elliptical neighborhood
- ◆Local orientation of each point is determined based on PCA considering points within its neighborhood

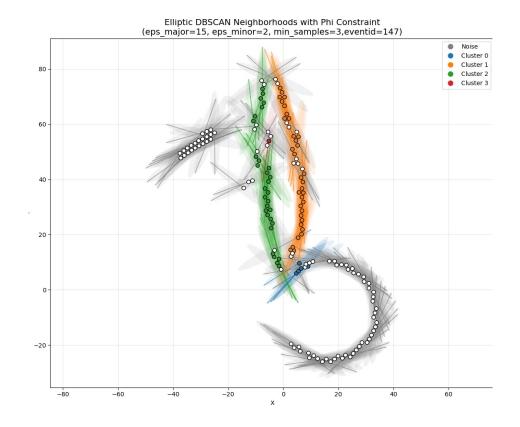
Parameters	Meaning	value
eps_major	long axis	15cm
eps_minor	short axis	10cm
min_samples	min neighbors	3
k (orientation calculation)	neighbors for PCA	5



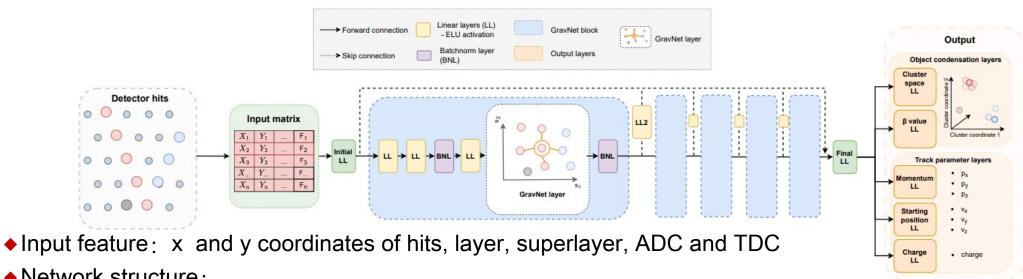
Split cluster via abnormal point

- Abnormal point detection:
 - large di-angle between direction of PCA and direction to the IP
- Further attempts:
 - assign large weight for hits in the same superlayer
 - veto hits in the same payer, same superlayer but another group





Object Condensation(OC) using GNN

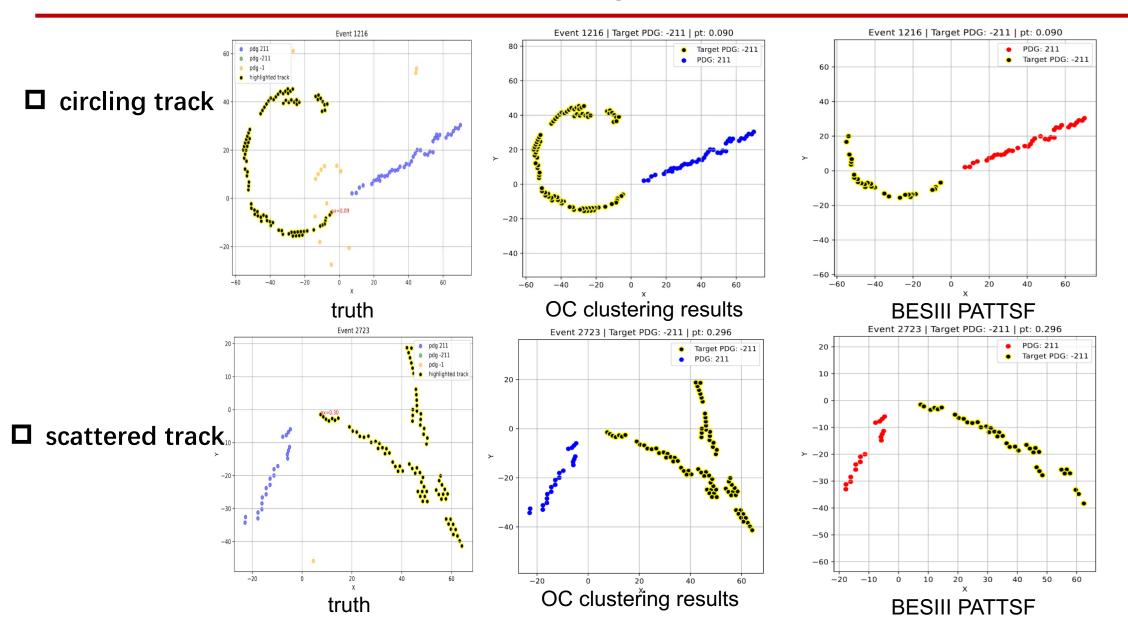


- Network structure ·
 - Initial II with FI U activation and batch normalization.
 - Multiple stacked GravNet blocks with skip connections. Each block includes :
 - A GravNet layer(GNN layer) that learns a latent space to determine neighborhood relationships and pass message.
 - Linear layers (LL) and batch normalization layers (BNL).
 - Final LL to generate output representations

- ◆Output:
 - Object condensation layers :
 - Cluster coordinates (for grouping hits belonging to the same track).
 - β-values (confidence scores for cluster centers).
 - Track parameter prediction layers: q, p_x, p_y, p_z, v_x, p_y, v_z

Comput.Softw.Bia Sci. 9 (2025) 1, 6

Track finding result via OC



Comparison of GNN and OC

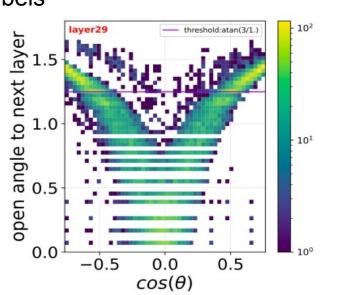
- ◆OC clustering efficiency is higher than GNN
- ◆Attempts to improve fitting rate: keep 1st circle or the part before scattering

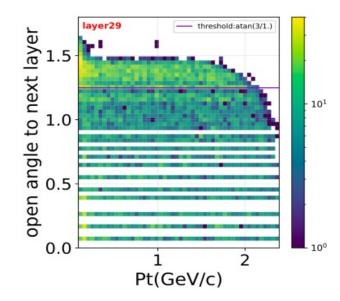
	GNN	OC
low momentum (pt<200MeV)	circling track event: bad clustering quality	better short track reconstruction; circling track event: good clustering efficiency but might fail in fitting
high momentum	large angle scattering fail in clustering, 2%-3% crossing tracks fail in clustering, 1%	large angle scattering fail in fitting, 3%-4%

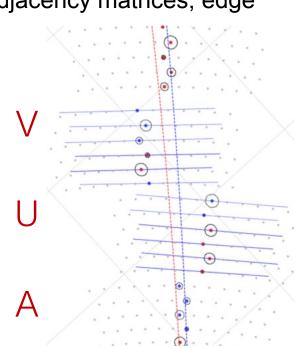
Graph construction at STCF

Geometric cut at STCF

- ◆ Edge assignment
 - Hit and two adjacent hits on the left and right sides (same layer)
 - Within a certain opening angle (the next layer and one layer apart)
 - The junction of U-V superlayers (layers 11 and 29) appropriately
- amplify the threshold Graph representation
 - Node features (raw time, position coordinates r, φ of the sense wires), adjacency matrices, edge labels

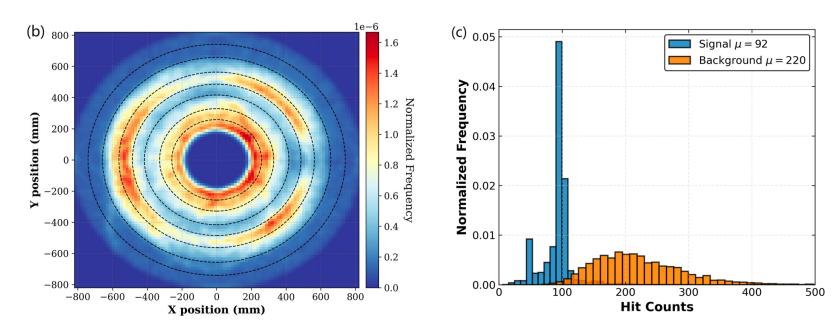


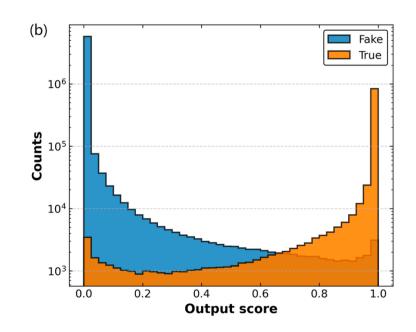




Performance of noise filter

- ♦PHSP J/ ψ → $\rho^0\pi^0$ → $\gamma\gamma\pi^+\pi^-$
- Noise rejection rate of 86.8% while maintaining 98.2% signal selection efficiency

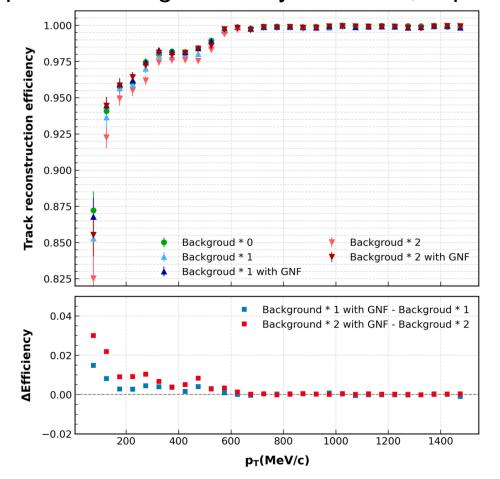


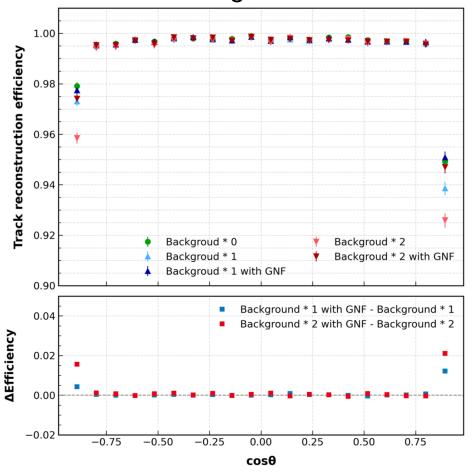


Noise hit distribution

Tracking performance after noise filter

- ♦Oscar version 2.6.0
- ♦PHSP J/ ψ → $\rho^0\pi^0$ → $\gamma\gamma\pi^+\pi^-$
- ◆Improve tracking efficiency with GNF, especially for low momentum region



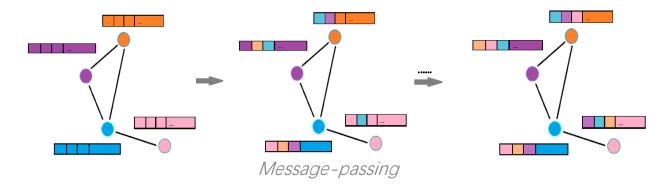


Summary

- ◆A novel tracking algorithm prototype based on machine learning method for BESIII/STCF is under development
 - GNN to distinguish the hit-on-track from noise hits.
 - Clustering method based on DBSCAN and RANSAC to cluster hits from multiple tracks
- Preliminary results on MC data shows promising performance
- ◆Outlook
 - Further optimization: circular, scattering...
 - Performance verification concerning events with more tracks and long lived particle Thank you!
 - Check the reconstruction time consumption

Graph Neural Network

◆GNN key idea: propagate information across the graph using a set of learnable functions that operate on node and edge features



- Graph Neural Network edge classifier
 - High classification score
 - the edge belongs to a true particle track
 - Low classification score
 - it is a spurious or noise edge

