Drift Chamber Tracking for COMET

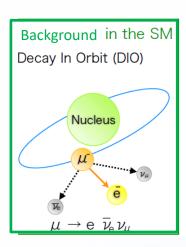
Patrice Lebrun¹, Wilfrid da Silva¹, Joe Stao², Siyuan Sun³, Yohei Nakatsugawa⁴, Chen Wu⁵, Tianyu Xing⁶, Ye Yuan⁵, <u>Yao Zhang⁵</u>

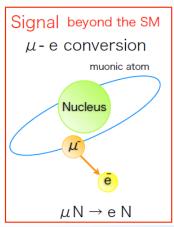
1 Sorbonne University/IN2P3
2 Saitama University
3 Osaka University
4 Wakayama Medical University
5 IHEP, CAS, China

Outline

- Introduction to COMET
- COMET Tracking detectors
- Tracking algorithms
- Summary

CLFV and $\mu N \rightarrow eN$ Conversion




• $\mu - e$ conversion: neutrinoless muon nuclear capture

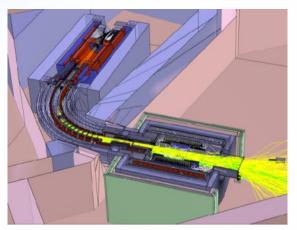
$$\mu^- + (A,Z) \rightarrow e^- + (A,Z)$$

Charged lepton flavor violated

- Background signature
 - No accidental background
 - Can utilize high luminosity
 - Beam background can be suppressed by pulsed beam
 - Physics background can be handled with current detector technology

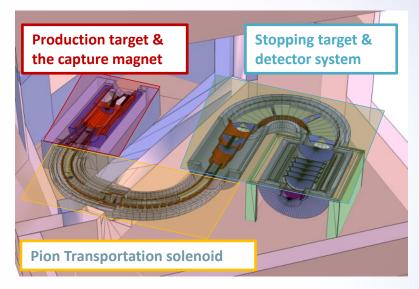
COMET(COherent Muon Electron Transition)

- Search for μ-e conversion in Japan J-PARC hadron hall
 - Measure the ratio of muon to electron conversions to the # of μ captures by nuclei
 - Using 8 GeV, 56 kW proton beam to generate muon beam
 - Mono-energetic of 105MeV electron
- Experiment Target:
 - $B(\mu^- + AI \rightarrow e^- + AI) = 2.6 \times 10^{-17}$ (S.E.S)
 - This is 10000 times improvement!


$$\mathrm{BR}(\mu^- N \to e^- N) \equiv \frac{\Gamma(\mu^- N \to e^- N)}{\Gamma(\mu^- N \to \mathrm{all})}$$

COMET Phase-I and Phase-II

Goals of Phase- I


1. Background measurements

direct measurement of potential background sources for the full COMET experiment by using the actual COMET beam line

2. Search for μ -e conversion

a search for μ -e conversion at the intermediate sensitivity which would be 3.1×10^{-15} which is 100-times better than the present limit (SINDRUM-II)

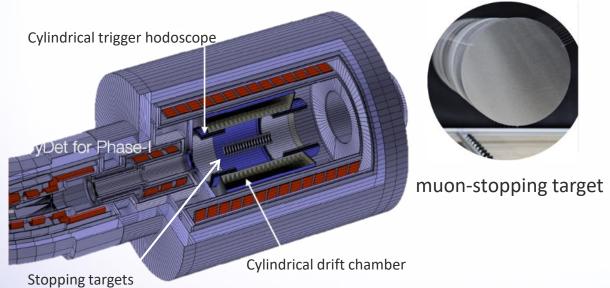
3. Beam characterization

Detectors: Straw Tracker + ECAL

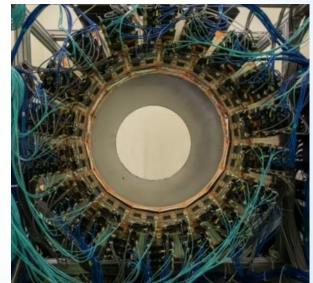
Goal of Phase-II

• search of μ -e conversion

single event sensitivity: 2.6×10^{-17} which is 10,000 better than the current limit

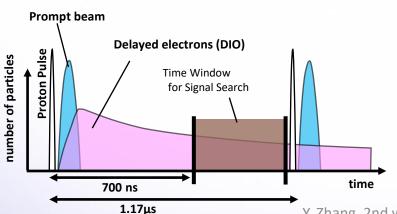


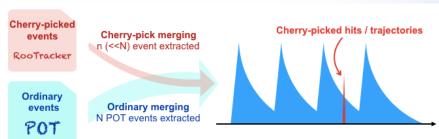
COMET Tracking detectors of COMET Phase-I


Y. Zhang, 2nd workshop on Tracking in

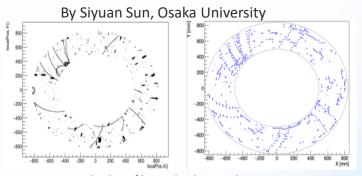
Particle Physics Experiments

- Cylindrical Drift chamber (CDC)
- Trigger hodoscope
- Al muon-stopping targets


Cylindrical drift chamber

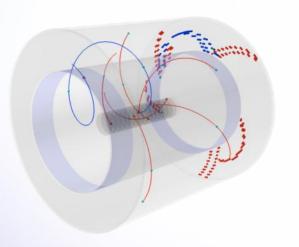


Proton Beam and Bunch Train Merger

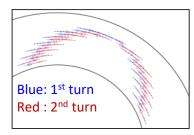

- 3kW proton prompt beam:
 - ~ 10¹⁹ protons on pion targets
 - (in 150 days running time)
- Bunch structure of proton beam
 - Bunch size ~ 10⁷ POT
 - Bunch spill/width ~100ns
 - Extinction factor 3x10⁻¹¹
 - Bunch separation time = 1170ns.

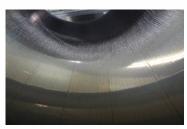
Time structure of proton beam bunch

Bunch train merger


Event display of beam background, occupancy ~20%

Y. Zhang, 2nd workshop on Tracking in Particle Physics Experiments




Challenges for COMET CDC tracking

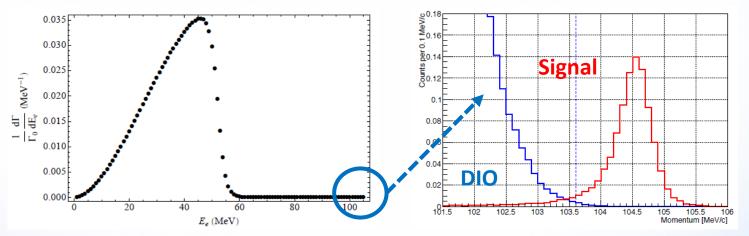
Initial position differs in a wide range

- No vertex constraint
- No seed from other-detector

105MeV/c electrons and ~40% multi-turn tracks

- All curled low momentum tracks
- Overlapping hits from different turns
- Bremsstrahlung

All stereo wires

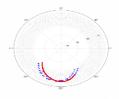

No direct measurements on Z

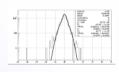
Requirements for COMET Tracking

- Estimate track seed by stereo measurements
- Distinguish tracks from different turns
- Suppress high momentum tail of reconstructed tracks

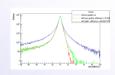

Branching ratio of DIO background

Momentum distribution of COMET Phase-I


Tracking Procedure


Hit filtering

GBDT, FPN, etc.


Track finding

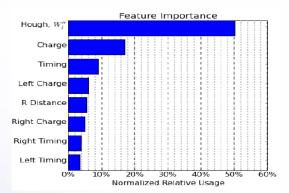
GPU tracking Hit combination scanning Deep learning

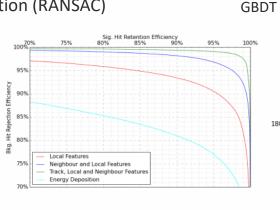
Track fitting

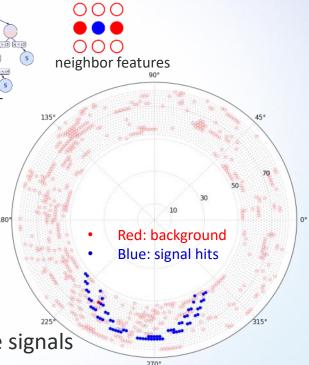
Kalman fitting/genfit2 Multi-turn kalman fitting

Track selection /BG suppression

GBDT, fitting



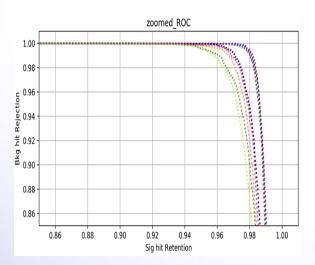

Hit filtering with GBDT

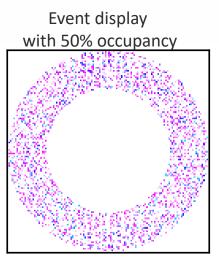


By Ewen L. Gillies, Imperial College London

- Hit filtering using Gradient Boosted Decision Trees (GBDT)
- Classify hits using local, neighbor and shape features
- Reweighted Inverse Hough Transform
- Fit initial track with random hit collection (RANSAC)

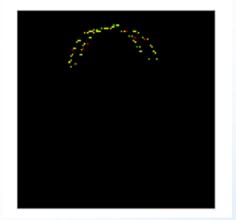
99 % of background can be rejected while keeping 99% of the signals


Hit filtering with DnCNN,FPN



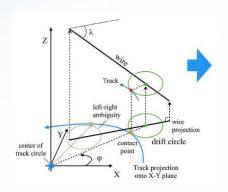
By J. SATO, Ikuya, Saitama University Chen Wu, IHEP

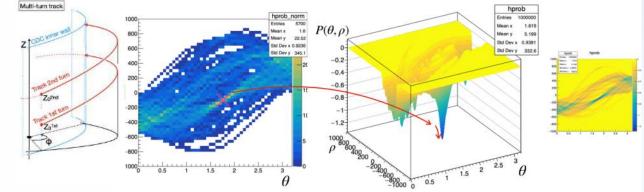
First turn extraction

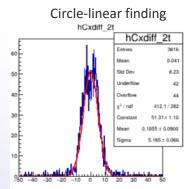

- Convolutional Neural Network(DnCNN)
- Feature Pyramid Network(FPN) with random noise

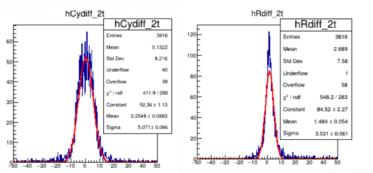
Y. Zhang, 2nd workshop on Tracking in Particle Physics Experiments

Hit filtering after NN



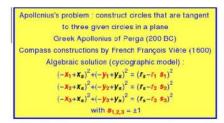



Track Finding with Hough Transform

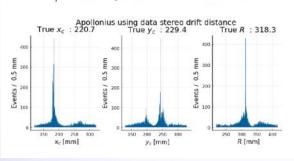


By Yohei Nakatsugawa, IHEP

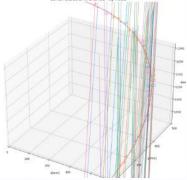
CPU assumption:0.3 sec /1 turn.

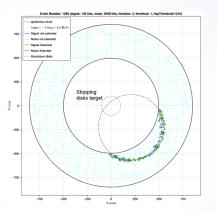


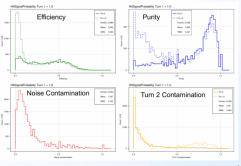
GPU-accelerated algorithm-The Apollonius Problem


by Wilfrid da Silva, Patrice Lebrun, Sorbonne University/IN2P3

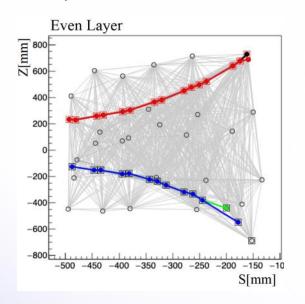
arXiv:2401.04576

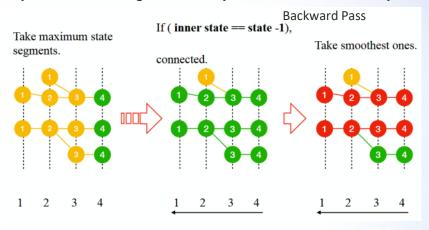

Apollonius Problem applied to a Stereo Drift Chamber Algorithm based on interval arithmetic with GPU device


toy model: 46 hits of electron signal (red) use $d_i^{St.}$ true signed stereo drift distance



Y. Zhang, 2nd workshop on Tracking in Particle Physics Experiments

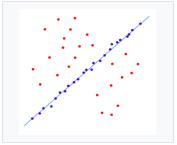




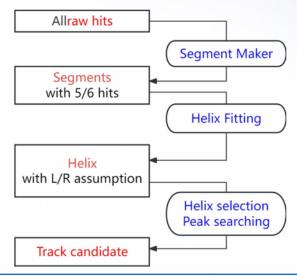
Cellular Automaton for Track Finding

 Connecting neighboring segments which satisfy certain fixed local features

By Yohei Nakatsugawa, Wakayama Medical University


- Tracking efficiency @10% occupancy
 - 92% for single turn
 - 69% for double turn

Ransac Track Finding

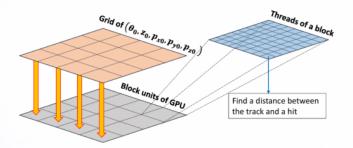

A data set with many outliers for which Fitted line with RANSAC; outliers have a line has to be fitted.

no influence on the result.

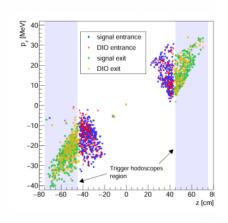
$$\sigma_x = 0.24 \text{ mm}, \sigma_v = 0.24 \text{ mm}, \sigma_v = 4.3 \text{ mm},$$

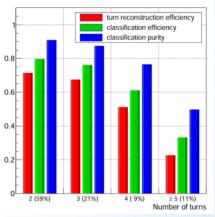
$$\sigma_{px} = 1.0 \text{ MeV/c}, \sigma_{py} = 1.0 \text{ MeV/c}, \sigma_{pz} = 4.9 \text{ MeV/c}$$

by IHEP, Tianyu Xing, Yao Zhang


	Geometrical Acceptance	Tracking		Totally	Tail	Momentum resolution
		finding	fitting	Totally	Idli	(body/tail)
Single Turn	14.0%	96.2%	99.4%	12.70/	1 60/	214ko\//522ko\/
		95.6%		12.7%	1.6%	214keV/533keV

Multiple Turn Tracking by GPU Scanning

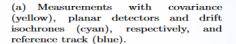

By Beomki Yeo, KAIST

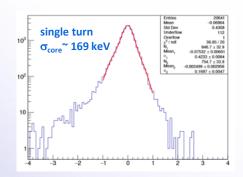

- Parallelized track seeds parameter scanning with GPU
 - Find the optimal the seeds by investigating the residual sum of hits and track

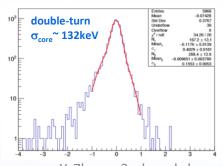
For each track, calculate the chi-square-like energy defined by:

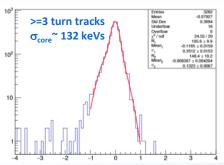
$$E = -\frac{1}{\beta} \sum_{k} \log \left(n_k e^{-\beta \lambda} + \sum_{i=1}^{n_k} e^{-\beta M_{ik}} \right) \approx \sum_{k} \min(\{M_{ik}\}, \lambda) \text{ if } \beta \to \infty$$

arXiv:1911.09340v3



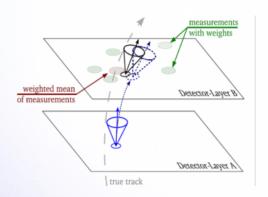

Track fitting


- Based on GenFit https://github.com/GenFit/GenFit/
 - An experiment-independent generic track fitting framework
 - Open sourced, active development and large user community
 - Official track fitting for BelleII, also used by PANDA, CEPC, BESIII, GEM-TPC etc.


Geometrical Acceptance	NL5	NHIT+Chi2+NDF+CL3	Total	
17.37%	73.55%	80.49%	10.28%	

By Yao Zhang, IHEP

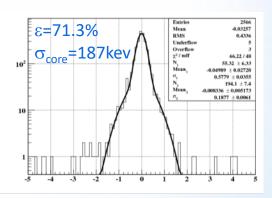
Y. Zhang, 2nd workshop on Tracking in Particle Physics Experiments



Multi-turn track fitting

By Yao Zhang, IHEP

- Multi-turn fitting with 1st turn assumption based on GenFit
 - Fitting with competition between hits
 - Several measurements per layer are taken into account by using their weighted mean



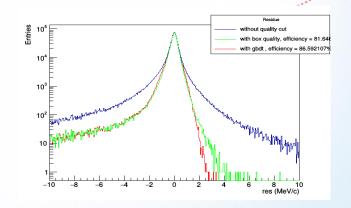
Weighted mean of measurement and it's cov. matrices

$$\left(\widetilde{\mathbf{V}}_k\right)^{-1} \equiv \widetilde{\mathbf{G}}_k = \sum_i p_k^i \mathbf{G}_k^i \qquad \widetilde{m}_k = \widetilde{\mathbf{V}}_k. \left(\sum_i p_k^i \mathbf{G}_k^i.\vec{m}_k^i\right)$$

DAF, competition between tracks and between mirror hits

$$p_{i_k j} = \frac{\varphi_{i_k j}}{\sum_l \sum_{\alpha} \varphi_{i_\alpha l} + c}.$$

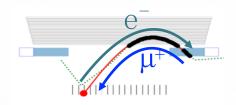
Good Quality Track Selection

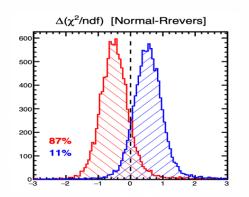

By Chen Wu, IHEP
Dorian Pieters , Osaka University

- The kink responsible for right and left part of the residue tail
- High quality track using an GBDT quality selection
 - Good events or Signal events are event with |residue| < 1MeV /c
 - Bad events or Signal events are event with residue > 2MeV /c

GBDT Parameters: Ranked by separation power

Input Variable	nput Variable Brief Description	
NHit	Number of Hit	1.975e-01
Chi2	χ^2	1.407e-01
NDF	degrees of freedom	1.332e-01
FittedMomX	Fitted momentum along beam axis	1.185e-01
MaxLayer	max layer of hit fitted	8.982e-02
chi2Const	Pearson test on hit residue	8.343e-02
errmomX	Fitted error on p_X - from GENFIT M_{error}	5.331e-02
errmomY	Fitted error on p_Y - from GENFIT M_{error}	4.145e-02
errmomZ	Fitted error on p_Z - from GENFIT M_{error}	3.982e-02
errZ	Fitted error on Z - from GENFIT Merror	3.611e-02
errX	Fitted error on X - from GENFIT Merror	3.570e-02
errY	Fitted error on Y - from GENFIT Merror	3.050e-02
NHitFailed	NHit rejected by GENFit	0.000e+00


Identification of Sneaking Cosmic Ray Muon


By M. Moristu IHEP

- Suppressing sneaking cosmic-ray background by track fitting
- Reverse μ⁺ MC samples were generated and evaluated

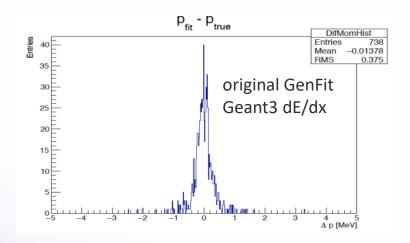
Naive Idea:

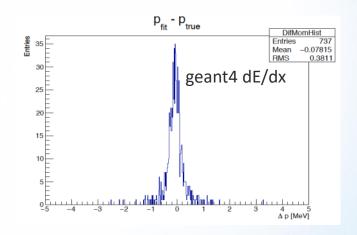
TOF miscorrection will make a difference in χ^2 between normal & reverse direction hypotheses.

- Signal e⁻ MC samples
- Reverse μ^+ MC samples

Spatial resolution = 150 μ m

Sneaking cosmic μ + BG can be reduced from 2.4 to 0.26 events, with signal retention efficiency of 87%.




Geant4 Material effects correction

By Yao Zhang, IHEP

- The material correction in GenFit is outdated and not suitable for low momentum electrons
- A development using GEANT4 EMCalculator to compute dE/dx



COMET Signal and Backgrounds

- Single Event Sensitivity = 3.1 x 10⁻¹⁵
- At momentum window 103.6MeV/c<p_e<106MeV/c, yielding a signal acceptance of 0.93

Summary

- CDC tracking is decisive to the success of the COMET Phase-I
- Multiple tracking algorithms have been implemented
 - Traditional
 - Machine learning based
 - GPU based