

ACTS Tracking for FASER

Saimeng Zhang (ZZU) Xiaocong Ai (ZZU) on behalf of FASER Collaboration

The 2nd Workshop on Tracking in Particle Physics Experiments, July 22, 2025 IMP, CAS, Huizhou

FASER Experiment

- Location:
 - 480 m downstream from ATLAS, aligned with the beam collision axis
 - Naturally clean environment: only LLPs, muons, neutrinos reach FASER
 - Charged particles deflected by LHC magnets
 - Neutral hadrons absorbed by TAN and ~100 m of rock
- Motivation:
 - Long-Lived Particles(LLPs) search: dark photon ($\pi^0 \rightarrow A'\gamma$), Axion-like particles(ALPs)... (LLPs results: <u>PLB 848 (2024) 138378</u> and <u>JHEP 01 (2025) 199</u>)

FASER Detector— Tracking System

- Detector composed of scintillators, FASERv, decay volume, tracking stations and calorimeter
- Tracking system: IFT(station0) and 3 stations inside magnetic field
 - each made of **3 layers** of **double-sided silicon micro-strip detectors**
 - Active area(per layer): 24 cm × 24 cm
 - Each layer contains **8 SCT modules** (same as ATLAS SCT)
 - Strip pitch: $80 \ \mu m$; Stereo angle: 40 mrad

- FASER adopted <u>ACTS</u> early and integrated it into its offline software Calypso (based on Athena)
- Tracking in FASER relies on ACTS Combinatorial Kalman Filter (CKF) for simultaneous track finding and fitting, and ACTS Kalman Filter (KF) for track refitting
- Dedicated seeding strategy matches FASER's telescope-like geometry
- Vast Migration from centos7 (ACTS v14.1.0) to alma9 (ACTS v32.02) in June 2024 and revisited the tracking code/performance based on existing ACTS CKF pipeline
 - ^o Identify and fix potential performance spots

Tracking with ACTS in FASER

Seeding process

Backward tracking with or without station0

Seeding process

Segment Find

Segments combination

- Segment Find: Segments are independently constructed in each station from local clusters
- Segments combination:
 - Segments from different stations are combined sequentially In decreasing order of contributing stations $(4 \rightarrow 3 \rightarrow 2 \rightarrow 1)$
 - Seeds are ranked by number of clusters and χ^2
 - Seeds with less than 10 clusters or more than 6 shared clusters are removed sequentially

MC samples

- Signal: $LLP(A') \rightarrow e^+ e^-$
- Model setup:
 - Lagrangian term: $\mathcal{L} \supset \frac{1}{2} m_{A'}^2 A'^2 \epsilon e \sum_f q_f A'^{\mu} \overline{f} \gamma_{\mu} f$
 - Production at FASER: Light meson decays (π^0/η) and Dark bremsstrahlung
 - Decay and sensitivity:
 - FASER sensitive to $\epsilon \sim 10^{-5}$ and $m_{A'} \sim 10 100$ MeV
 - For $2m_e < m_{A'} < 2m_{\mu} \sim 211$ Mev, $Br(A' \rightarrow e^+e^-) \approx 100\% \frac{1}{2}$
- Three representative parameters are investigated (FORESEE): $m_{A'} = 100 \text{ Mev}, \ \varepsilon = 1 \times 10^{-5} \text{ ; } m_{A'} = 10 \text{ Mev}, \ \varepsilon = 1 \times 10^{-5} \text{ ; } m_{A'} = 10 \text{ Mev}, \ \varepsilon = 1 \times 10^{-4}$
- Number of events : 60k

Metrics for tracking performance

- Track-based Metrics (vs theta / P_T of charged particles at production vertex)
 - **Efficiency** = $\frac{nSeeds/nTracks^{\{reco,matched\}}}{nParticles^{\{fiducial\}}}$
- Event-based Metrics (vs ΔR_1)
 - **Efficiency** = $\frac{nEvents^{\{nSeeds/nTracks \ge 2\}}}{nEvents^{\{nSeeds/nTracks \ge 1\}}}$
 - **TrackSeparation** (ΔR_1): Separation

between the electron and positron at the station3 tracking station in the x-y plane

- Truth-level particle:
 - In fiducial region: $\bar{r}_{station1\backslash2\backslash3} \leq 100 \text{ mm}$
 - \circ nHits ≥ 18

Figure from: PLB 848 (2024) 138378

- Two highly collimated charged tracks (e.g. r < 95 mm,
 p > 20 GeV) → from dark photon decay (A'→ e⁺ e⁻
 in decay volume)
- Charged particle has no hits at IFT station
 --The efficiency of the three-station tracking and the four-station tracking should be the same

Distribution of P/theta/ P_T at production vertex

Evaluation of Seeding Efficiency

• Track-based efficiency vs theta/ P_T

Efficiency peaks at ~95%, gradually decreases in low-theta and full P_T region.

• Event-based efficiency vs ΔR_1

Efficiency remains high (~98%) ,with only a slight dip at very small separations.

Seeding Resolution

targetZ = zMinCluster - 10 mm

targetZ = 2470 mm

Evaluation of CKF tracking efficiency (Track-Based)

Track selection : nMeasurements \geq 12, nSharedHits \leq 6

- CKF tracking efficiency starts around 90% and decreases gradually with increasing theta or P_T .
- Backward tracking efficiency is slightly lower than forward tracking in the low theta region and across the full P_T range.

Evaluation of CKF tracking efficiency (Event-based)

- CKF efficiency stays relatively stable (~90%), but shows a slight drop with increasing separation.
- Consistent with trend observed in track-based CKF efficiency.

CKF Resolution

- Residual = $loc0^{fit} loc0^{hit}$
- CKF residual resolution per layer remains stable around 20 μm.
 --indicates high-precision track fitting

Summary

- Summary
 - ACTS tracking pipeline successfully applied for data production in FASER Run
 - Driving the first direct collider neutrino discovery and lots of LLPs search
 - Seeding shows robust performance
 - CKF performance degrades at large angles and wider track separations
 - Related to tracking station geometry definition in ACTS
- Outlook
 - Define tracking geometry in ACTS along global x axis (instead of global z axis)
 - Improve CKF efficiency by merging tracks from forward and backward tracking
 - Investigate other tracking algorithms (Hough Transform, GNN) in ACTS

Seeding FakeRate & Duplicates

CKF FakeRate & Duplicates

- fakeRate definition: $\frac{reco\ tracks^{truthHitsRatio<0.5}}{reco\ tracks^{matched\ truth\ particle}}$
- nDuplicates = -1: truthParticle has no matching tracks

Track separation(ΔR_1): Separation between the electron and positron at the

station3 tracking station in the x-y plane

- e⁺/e⁻ better separated in station3 after magnetic bending
- Station 1 has limited resolution for close tracks
- ^o from MC truth

The production vertex of charges particles

Figure from: <u>PLB 848 (2024) 138378</u>

Truth information

that there will be at least one hit in each layer.

The distribution of truth_nHits per layer

Track merging strategy

- Goal: **Recover full track** by merging compatible forward & backward tracks
- The way of mergeTracks (from Lawson):
 - Method 1: GreatestMeasurements
 - Sort all tracks (forward & backward) by number of measurements (\downarrow) and χ^2 (\uparrow)
 - Remove tracks that share more than 6 measurements with higher-ranked ones
 - Method 2: SeenByBothForwardAndBackward
 - Match forward & backward tracks based on parameter proximity at same z (e.g. $\Delta r < 5 \text{ mm}$)
 - $\circ~$ For each matched pair, keep track with smaller χ^2