Implementation of Acts at sPHENIX

Joe Osborn

Brookhaven National Laboratory $2^{\rm nd}$ Tracking in Particle Physics Workshop

July 22, 2025

- A Common Tracking Software (Acts) is an experiment independent tracking toolkit used in high energy nuclear and particle physics experiments
- Contains production and R&D testbed
- Utilizes modern c++ development and tools
- sPHENIX was an early adopter, and is one of three experiments worldwide using Acts with real data

- sPHENIX detector designed for high precision tracking and jet measurements at RHIC
 - Large, hermetic acceptance
 - Hadronic calorimetery (first at RHIC)
 - Large offline data rate of ${\sim}100~\text{Gbit/s}$
- Study QCD matter at varying temperatures for direct comparisons to LHC
- Study partonic structure of protons and nuclei

sPHENIX Experiment

- MAPS based vertex tracker (MVTX)
 - Near copy of ITS2 inner barrel
 - Precision vertexing

- MAPS based vertex tracker (MVTX)
 - Near copy of ITS2 inner barrel
 - Precision vertexing
- Silicon strips (INTT)
 - Pattern recognition + identifies bunch crossing

- MAPS based vertex tracker (MVTX)
 - Near copy of ITS2 inner barrel
 - Precision vertexing
- Silicon strips (INTT)
 - Pattern recognition + identifies bunch crossing
- Time Projection Chamber (TPC)
 - Momentum resolution
 - dE/dx based PID at low momentum

- MAPS based vertex tracker (MVTX)
 - Near copy of ITS2 inner barrel
 - Precision vertexing
- Silicon strips (INTT)
 - Pattern recognition + identifies bunch crossing
- Time Projection Chamber (TPC)
 - Momentum resolution
 - dE/dx based PID at low momentum
- Micromegas tiles (TPOT)
 - TPC space charge distortion calibration

- MAPS based vertex tracker (MVTX)
 - Near copy of ITS2 inner barrel
 - Precision vertexing
- Silicon strips (INTT)
 - Pattern recognition + identifies bunch crossing
- Time Projection Chamber (TPC)
 - Momentum resolution
 - dE/dx based PID at low momentum
- Micromegas tiles (TPOT)
 - TPC space charge distortion calibration

 $\ensuremath{\mathsf{4D}}$ tracking to precisely reconstruct space and time structure of physics events Joe Osborn (BNL)

sPHENIX Run Plan

- Collected a sample of p+pcollision data at $\sqrt{s} = 200$ GeV in 2024, after an intense commissioning period
- Currently taking flagship Au+Au data at $\sqrt{s} = 200$ GeV, goal of $\mathcal{L}=7nb^{-1}$

Hybrid Streaming and 4D Reconstruction

- Collected hybrid streamed data silicon 100% streamed and TPC streamed 50µs of additional unbiased p+p collisions after every rare event trigger
- Collect large sample of unbiased p+p at $\mathcal{O}(200)$ kHz
- Assemble tracks in space and shift TPC track in time based on INTT measurements' time bucket Joe Osborn (BNL)

sPHENIX and Acts

- Implemented Acts in 2020 as production tracking toolkit
 - See CSBS 5, 23 (2021)
- Currently using Mid-Point seeding, KalmanFilter, and a variety of propagation tools (e.g. for vertices, track states at calorimeters, etc.)
- Running on Actsv34.1.0 consumed by commissioning/operations, need to update
- Tracking production workflow in advanced stage - regularly producing fully fitted tracks

Clustering, seeding, track fitting, vertexing

- 1. Trigger frame building associate hits to global timing unit trigger time in trigger time range
- 2. Associate hits to GL1 with relative bunch crossing
- 3. 4D (space+time) clustering in each subsystem
- 4. Track seeding associate subsystem independent seeds to each other in space+time, apply distortion corrections
- 5. Fit tracks and determine vertices, determing track/vertex/crossing associations

- 1. Trigger frame building associate hits to global timing unit trigger time in trigger time range
- 2. Associate hits to GL1 with relative bunch crossing
- 3. 4D (space+time) clustering in each subsystem
- 4. Track seeding associate subsystem independent seeds to each other in space+time, apply distortion corrections
- 5. Fit tracks and determine vertices, determing track/vertex/crossing associations

Acts Implementation Strategy

- Acts requires geometry and measurement objects (that's all)
- sPHENIX EDM stores necessary information for Acts objects
- Modules act as wrappers for calling Acts tools and updating sPHENIX EDM

Acts Implementation Strategy

- Acts requires geometry and measurement objects (that's all)
- sPHENIX EDM stores necessary information for Acts objects
- Modules act as wrappers for calling Acts tools and updating sPHENIX EDM
- Fun4All-sPHENIX code available on Github code is open source and containerized with Singularity. Feel free to ask for more details!

Acts Geometry - Silicon

- Acts is able to perform material calculations quickly due to a simplified geometry model
- Acts contains an available TGeometry and DD4Hep plugin which takes TGeoNodes and builds Acts::Surfaces
- Any changes to sPHENIX GEANT 4 silicon surfaces are then reflected in Acts transparently

Acts Geometry - TPC

- Acts geometry model not immediately suited to TPC geometries, since surfaces are required
- With TPC, charge can exist anywhere in 3D volume
- In place, create planar surfaces that mock cylindrical surfaces
- Surfaces are set at readout layers, so there is a direct mapping from a TPC readout module to *n* planar surfaces

- Acts tools described so far are "pre-packaged"
- Versatility of Acts tools are templated, flexible, and can be adapted to your use case
- Example: use propagator to identify track states for TPC space charge distortions and track-to-calorimeter projections
- Example: unique Acts::GeometryContext to apply distortion corrections on track by track basis

- Alignment of MVTX to $\mathcal{O}(5)\mu m$ necessary
- Acts has state jacobian information available to develop an alignment workflow with the (Combinatorial) Kalman Filter
- We have recently started exercising this machinery after using a simple helical fit method to do the initial ~ 100 micron alignment.

Streaming Readout Performance

- Tracking operates with unique extended streaming readout
- Enables collection of large unbiased p + p dataset for open heavy flavor studies
 - Channels are untrigger-able \Rightarrow requires streaming
- Tracks reconstructed with approximately constant efficiency as a function of crossing number
 - $\Rightarrow \ {\sf Streaming \ readout \ was \ successful}$

Light Flavor Reconstruction

- Early calibrations show clear K_s^0 peak after optimized cuts
- Reconstructible across all beam crossings

Joe Osborn (BNL)

 $\Rightarrow\,$ Streaming readout and reconstruction successful!

Light Flavor Reconstruction

- Early calibrations show clear K_s^0 peak after optimized cuts
- Reconstructible across all beam crossings
 - \Rightarrow Streaming readout and reconstruction successful!

Heavy Flavor Reconstruction

- First *D*⁰ invariant mass peak already measured!
- Focused analysis efforts corresponding to ~ 1 hour of data (!)
- Ongoing effort to optimize selection efficiencies as feedback for improving yields and early calibrations

Conclusions

- Acts toolkit is a flexible tracking toolkit that can (with some work) be deployed anywhere
- sPHENIX has been successfully using Acts in its tracking reconstruction workflow since 2020
- Streaming data readout and reconstruction with Acts demonstrated successfully with K_s^0 , Λ^0 , ϕ , Ξ , Σ , D^0 , and Λ_c^+
- Some lessons learned
 - Geometry is the most challenging part inherently experiment specific
 - Acts is flexible for a reason not necessarily suited out of the box for your use case!
 - Valuable to have community of experts across wide range of high energy nuclear and particle physics, all addressing related problems
- Available geometries has expanded tremendously from community involvement e.g. telescope like detectors

Back up

- + MVTX 3 layers of MAPS staves within $\sim 1 < r < 5$ cm
 - Precision space point identification for primary and secondary vertexing
 - $\mathcal{O}(1-10)$ micron precision in $r\phi$, z
 - Integration time $\mathcal{O}(\mu s)$
- INTT 4 layers of silicon strips within \sim 7 < r < 11cm
 - $\mathcal{O}(10)$ s micron precision in $r\phi$, 1cm in z
 - Fast $\sim 100 \textit{ns}$ integration time
- TPC Compact, 48 layer, continuous readout GEM-based
 - $\mathcal{O}(100)$ micron precision
 - + Long $\sim 14 \mu \text{s}$ drift time
- TPOT 8 modules of micromegas to provide additional $\mathcal{O}(100)$ micron space point outside of TPC

sPHENIX Tracking

- MVTX 3 layers of MAPS staves within $\sim 1 < r < 5$ cm
 - Precision space point identification for primary and secondary vertexing
 - $\mathcal{O}(1-10)$ micron precision in $r\phi$, z
 - Integration time $\mathcal{O}(\mu s)$
- INTT 4 layers of silicon strips within \sim 7 < r < 11cm
 - $\mathcal{O}(10)$ s micron precision in $r\phi$, 1cm in z
 - Fast $\sim 100 \textit{ns}$ integration time
- TPC Compact, 48 layer, continuous readout GEM-based
 - $\mathcal{O}(100)$ micron precision
 - + Long $\sim 14 \mu {\rm s}$ drift time
- TPOT 8 modules of micromegas to provide additional $\mathcal{O}(100)$ micron space point outside of TPC Calibration

Each detector plays a critical role for the success of sPHENIX physics! (BNL)

Momentum

Vertexing

Timing

a(ts

Distortion Corrections

- $\mathcal{O}(cm)$ distortions reconstructed with pulsed laser system
- $\mathcal{O}(mm)$ distortions reconstructed with tracks with TPOT
- $O(100 \mu m)$ distortions reconstructed with diffuse laser

Distortion Corrections

- $\mathcal{O}(cm)$ distortions reconstructed with pulsed laser system
- $\mathcal{O}(mm)$ distortions reconstructed with tracks with TPOT
- $\mathcal{O}(100 \mu m)$ distortions reconstructed with diffuse laser
- Use MVTX+INTT+TPOT to define precisely timed in trajectory then perform calibrations with TPC residuals

- Find tracks using all detectors
- Fit tracks with MVTX+INTT+TPOT
- Form cluster-track residuals in TPC in ϕ and z

Reconstructing Distortions with Tracks

- Divide TPC in to O(10,000) volume elements and form linear relationships between residuals and track angles
 - $$\begin{split} r\Delta\phi &= r\delta\phi + \delta r \tan \alpha \\ \Delta z &= \delta z + \delta r \tan \beta \\ \chi^2 &= \sum \frac{r\Delta\phi |r\delta\phi + \delta r \tan \alpha|^2}{\sigma_{r\phi}^2} + \frac{\Delta z |\delta z + \delta r \tan \beta|^2}{\sigma_z^2} \end{split}$$
- $\Delta\phi$ and Δz measured residuals in the TPC
- α, β local track angles measured in (ϕ, r) , (z, r) planes
- δr , δz , $\delta \phi$ are unknown distortions
- Minimize and solve which gives three linear equations for three unknown average distortions

Tracking Timeline

8/2024

23

Tracking Timeline

Tracking Timeline

- Cuts made on (for different states)
 - Track IP
 - Track PID estimate
 - Track-to-track DCA
 - N_{states} in subsystems
 - Transverse decay length
 - DIRA
 - Mother IP
 - Secondary vertex χ^2

TPC Performance

- TPC demonstrates stable performance with 5% isobutane
- PID separation with early *dE/dx* calibration (despite not being designed for this)
- Used for combinatoric background suppression at low momentum