

中国科学院近代物理研究所

Institute of Modern Physics, Chinese Academy of Sciences

Torodial Magnet Design for The Proton Polarimetry at EicC

Boxing Gou(勾伯兴) gouboxing@impcas.ac.cn

EicC Bi-weekly Meeting

February 16, 2022

- Very small Q^2 in inverse kinematics
- Proton form factor well measured
- All observables are exactly calculable Phys. Rev. C 84, 015212(2011)

Reference Reactions for Proton Polarimetry

be able to measure longitudianl polarization

Concept for Electron Detection

Might be applicable to D and 3He beam polarimetry as well

MC Simulation -- Electron Detector

Coil
B field
e counter
electron
proton
Recoil Si detector

- MC simulation package ready
 Many parameters to optimize
 - Field: geometry, position, strength
 - eCounter: geometry, position, material
 - •

Magnet Design -- Particle Motion in B Field

- B field in toroidal magnet follows power distribution
- Charged particles experience Lorentz force in B field

Magnet Design -- Particle Motion in B Field

The solution Z and R are functions of θ

q = -1 $R = R_i \left[\frac{mv}{e\lambda \frac{1}{R_i}R_i} \left[\cos\theta_i - (\cos\theta) \right] = R_i \left[\frac{P_i}{R_i} \left(\cos\theta_i - (\cos\theta) \right] \right]$ $\chi = \chi_{i} + P_{i} \int_{\Theta_{i}}^{\Theta} \mathcal{O}[\frac{P_{i}}{R_{i}}(108\Theta_{i} - 105\Theta)] \cos \theta d\theta$ 2 -4 $R = R_{2} \left\{ 1 + \frac{P_{i}}{R_{2}} (\alpha + 1) \left[(050_{2} - (050_{2}) \right] \right\}^{(\alpha + 1)^{-1}}$ $Z = Z_i + P_i \int_{\Theta_i}^{\Theta} \frac{\cos \theta}{\left\{1 + \frac{P_i}{R_i} \left(\alpha + \eta\right) \left[\cos \theta_i - \cos \theta\right]\right\}^{\frac{1}{\alpha} + 1}} d\theta$ 7

Magnet Design -- Find The Focal Point

$$\begin{cases} R = R_{i} e^{\sum \frac{R_{i}}{R_{i}} (\cos \theta_{i} - \cos \theta)} \\ \overline{Z} = \overline{Z}_{i} + \int_{i}^{\theta} \int_{\theta_{i}}^{\theta} e^{\left[\frac{R_{i}}{R_{i}} (\cos \theta_{i} - \cos \theta)\right]} \\ \cos \theta d\theta \end{cases}$$

$$(Z_{i}, R_{i})$$

$$(Z_{i}, R_{i})$$

$$Z_{i} - \overline{Z}$$

$$R_{i} - R_{i} e^{\frac{R_{i}}{R_{i}} (\cos \theta_{i} - \cos \theta)} \\ R_{i} - \overline{Z}_{i} - \int_{i}^{\theta} \int_{\theta_{i}}^{\theta} e^{\frac{R_{i}}{R_{i}} (\cos \theta_{i} - \cos \theta)} \\ \cos \theta d\theta = \tan \theta$$

$$Z_{i} - \overline{Z}_{i} - \int_{i}^{\theta} \int_{\theta_{i}}^{\theta} e^{\frac{R_{i}}{R_{i}} (\cos \theta_{i} - \cos \theta)} \\ \cos \theta d\theta = \tan \theta$$

$$\theta \text{ determined numerically}$$

Exit boundary calculated from θ

Magnet Design -- Crosscheck

Same result as obtained in geometrical method for uniform field :)

Magnet Design -- A Solution at 10 GeV/c

Magnet Design -- B Field Implemented in Sim Code

Magnet Design -- B Field Implemented in Sim Code

Magnet Design -- Beam Energy Dependence

13

Magnet Design -- Beam Energy Dependence

coil optimzed at 10 GeV/c

Optimize geometry

- coil
- focal position
- detector
- Magnetic field emulation
 - with COMSOL
 - in progress
- Background study
 - pythia generator ready

